Equivalence of Round-Based and Non-Round-Based Message-Passing
Models

Dhrubajyoti Ghosh, supervised by Thomas Nowak

Laboratoire Méthodes Formelles (LMF), ENS Paris-Saclay

January 6, 2026

General context

We study the relative power of message-passing models of computation in distributed computing
systems with complete networks, i.e., all processes can send each other messages. Most distributed
algorithms for asynchronous message-passing models construct a round structure. If f out of n pro-
cesses can fail by crashing, then each process waits for messages from all but f other processes before
advancing to the next round. Due to the ubiquity of round-based algorithms, several round-based
models for analyzing asynchronous systems have been proposed. In these models, processes take steps
synchronously, but up to f incoming messages can be dropped at each process in each round. The
question of whether round-based message-passing models are equivalent to the original asynchronous
models in terms of solving decision tasks has mostly remained open. This is because while the above
method of implementing synchronous systems in asynchronous systems is commonly used, the converse
direction has not received as much attention.

In [1], Afek and Gafni study round-based models that are equivalent to the read-write wait-free
model, which is a shared memory model. In [10], Gafni and Losa consider the problem of comparing
round-based and asynchronous message passing models for the case of at most one fault, restricting
themselves to colorless decision tasks, and show that it is possible. We attempt to generalize this
result.

Research problem

We study whether there is a round-based message-passing model that is equivalent to the Asynchronous
Message Passing (AMP) model with f process failures, i.e., whether they solve the same set of decision
tasks. One of our candidate round-based models is the Heard-Of (HO) model, which is the focus of
this work.

This is equivalent to asking whether the above approach of constructing a virtual round-based
system in AMP in order to solve tasks is always possible. Round-based models are often easier to
analyze, for designing and analyzing algorithms as well as for proving lower bounds and impossibility
results. Hence an affirmative answer would ease our work in dealing with the AMP model considerably.

Another motivation for this problem is the following. A question posed by our research group is
whether it is possible for two models that are non-isomorphic in the longest-common-prefix topology [2]
to solve the same set of decision tasks. As the AMP model with process failures is non-compact and
the HO model is compact, these are reasonable candidates for our work.

Our problem is not new: the question of whether round-based models are equivalent to models
where late messages are not discarded has for example been raised by Charron-Bost and Schiper in [5].
Gafni and Losa [10] have studied this problem for colorless tasks with at most one process failure.

I chose this problem because it appeared to be a fundamental unanswered question. It also consti-
tutes an important first step towards the comparison of models that are non-isomorphic as topological
spaces.

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

My contribution

I have comprehensively answered how the AMP model with f process failures and the HO model agree
or differ on the classes of colorless and colored tasks (any task that is not colorless) for f < n/2. They
solve the same set of colorless tasks for f < n/2, while only solving the same set of colored tasks for
f=1.1If 1 < f <n/2, they do not solve the same set of colored tasks.

In order to obtain the first two results, I first defined a variant of the HO model, called SFHO.
Using existing techniques, I showed that the set of tasks solvable in AMP lies between that solvable in
HO and that solvable in SFHO. The next step was to find the conditions under which HO and SFHO
coincide. The difference between the HO and SFHO models is the existence of a so-called silenced
process which is not obliged to produce an output in SFHO but is obliged to do so in HO. Depending
on the value of f and whether the task is colored or colorless, one can guarantee that a silenced process
can produce an output.

The last case with colored tasks and 1 < f < n/2 presented a considerable challenge. I tried to
extend our approach in the case of colored tasks with f = 1 but without any success. I then tried to
search for colored tasks that would be solvable in one model but not the other. Eventually, I found
the renaming task [3] as a possible candidate which was known to be solvable in AMP. I was then
able to prove that it is not solvable in HO for f > 1. This was fortunate as not many tasks are known
that are solvable in AMP.

Arguments supporting their validity

We establish the validity of our results through formal proofs.

Some assumptions had to be made on the protocols that are considered in the context of the
renaming task (Section 8). These are reasonable assumptions, and the same as those used in the
original paper [3] defining the task. Without these assumptions, the renaming task becomes trivial in
any model.

Summary and future work

I was able to extend the result of Gafni and Losa [10] which only considered the case of colorless
tasks for f = 1 to the case f < n/2. Moreover I was able to answer the question for colored tasks
for all f < n/2. I showed that the AMP and HO models coincide in the case of colorless tasks for
f < n/2 and in the case of colored tasks for f = 1. I also showed that this is not true in the case of
colored tasks where 1 < f < n/2. We believe this to be the first instance where a task solvable in the
AMP model has been shown to be not solvable in its round-based counterpart. This implies that the
approach of constructing a virtual round-based system in AMP cannot always be used to solve tasks
in AMP. My result for the case f = 1 also implies that the solvability of decision tasks cannot be used
to distinguish models that are non-isomorphic as topological spaces.

The next step is to consider the case where the number of failures is at least half the number of
processes, i.e., f > n/2. We also introduce an intermediary round-based model called the Silenced-
Faulty Heard-Of model (SFHO) that coincides with AMP in the same cases where HO does so with
AMP. However, it is not clear whether SFHO and AMP agree or differ in the case of colored tasks for
1 < f < n/2 and thus can be studied in future work.

Acknowledgements

I would like to thank my supervisor Thomas Nowak for his help in coming up with the results in this
report, and Hagit Attiya and Armando Castaneda for our numerous discussions on the problem.

Dhrubajyoti Ghosh 2

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

1 Introduction

We consider message-passing distributed systems consisting of a complete network of n > 1 processes
where each process can send a message to another process including itself.

The asynchronous message-passing model [8] with at most f faults (AMP) has no restrictions on
message delays between processes, and at most f processes may stop functioning. One approach to
solving problems is to have each process progress in rounds where in each round it sends a message
and waits to receive at least n — f messages before proceeding to the next round. It does not wait to
receive messages from the remaining at most f processes for it cannot be sure if they have stopped.

This leads us to consider synchronous round-based models such as the Heard-Of model [5] with f
faults (HO¢) where in each round, every process may fail to receive at most f messages from other
processes. Instead of having processes that fail, we only allow the loss of messages. Round-based
models are convenient for designing algorithms and proving impossibility results, in part due to the
fact that processes do not have to wait for unreceived messages in any round.

The class of problems that we are interested in solving is that of decision tasks, or simply tasks.
A protocol solving a task in a model must ensure that for every combination of inputs that processes
can start their computation with, the combination of their outputs is valid according to the task
specification. The class of decision tasks can be split into two subclasses: colorless tasks and colored
tasks.

We ask whether the above approach of constructing a virtual round-based system in AMP can
always be used to solve tasks in AMPy, or equivalently, whether AMP; and HO/ solve the same set
of tasks.

The question of whether round-based message passing models are equivalent to the ones in which
late messages are not discarded has previously been raised by Charron-Bost and Schiper [6]. To our
knowledge, this problem has only been studied by Gafni and Losa [10], where it was shown for n > 2
and f =1 that AMP; and HOy solve the same set of colorless tasks. In related work, the problem of
finding a round-based message-passing model equivalent to the read-write wait-free model (a shared
memory model) was studied by Afek and Gafni [1].

We generalize the result of [10] to show that it is in fact true for any f < n/2. Moreover, we answer
the question for colored tasks in the case f < n/2, thus giving a comprehensive list of similarities and
differences between the two models for f < n/2. Under a general definition of task solvability, we
show that for n > 2f,

e AMP; and HOy solve the same set of colorless tasks (Theorem 7.4).
e AMP; and HO; solve the same set of colored tasks for f = 0,1 (Theorem 7.12).

We finally show that the result deviates for the case of colored tasks with 1 < f < n/2. In this case,
we show that the renaming task [3], which is a colored task, is solvable in AMP; but not in HOy
(Theorem 8.1); to our knowledge, this is the only task now known to be solvable in AMP; but not
in its round-based counterpart HO;. It should be noted that the specification of the renaming task
requires us to slightly restrict the definition of task solvability in order to rule out trivial algorithms.

The proof strategy for Theorems 7.4 and 7.12 is as follows. We use the method of constructing
a virtual round-based structure in AMP to show that tasks solvable in HO are solvable in AMP;.
The converse direction is more involved. We introduce a variant of the HO; model called SFHO/,
and show that tasks solvable in AMP are solvable in SFHO;. Now it remains to find the conditions
under which HO; and SFHOy coincide. The sole difference between the HO; and SFHO; models is
the existence of a silenced process, which is not obliged to decide an output when solving a task in
SFHO/ but is obliged to do so in HO. Depending on the value of f and whether the task is colored
or colorless, we can guarantee that a silenced process will be able to decide an output.

1.1 Paper organisation

In Section 2, we describe the models of computation AMP; and HO/, and define decision tasks and
task solvability. In Section 3, we briefly describe simulations. In Section 5, we introduce the SFHO;

Dhrubajyoti Ghosh 3

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

model. Sections 4 and 6 together establish an inclusion hierarchy among the sets of tasks solvable in
models HOy, AMP; and SFHO;. In Section 7, we study the conditions under which HOy and SFHOy,
and consequently AMP/, coincide. Finally in Section 8 we show when AMP; and HO/ differ.

2 Models of computation

The definitions in this section have been taken from multiple sources [3, 4, 7, 8, 9].

In a message-passing model M, each process follows a deterministic algorithm involving the sending
and receiving of messages. Each process has a message buffer that holds the messages that have been
sent to it but not yet received. Messages are sent to processes by adding them to their buffers. The
exact specifications of the send and receive primitives depend on the model of computation.

A protocol P in a model M is a system of n > 1 processes P = {p1,...,p,} modeled as deter-
ministic automata with infinite state spaces. We assume that each process has a unique identifier
that is hard-coded within itself. A configuration of P consists of the state of each automaton and the
contents of every message buffer. In an initial configuration, each automaton is in an initial state and
each message buffer is empty. An event of P in M is of the form op;(v) where:

e p; is the process associated with the event.
e op is the send or receive communication primitive in M.

e If op is a send operation, then p; sends value v and if it is a receive operation, then p; reads
value (or a set of values) v from the message buffer.

State transitions in automata are triggered by the occurrence of events at processes. An event is
enabled in a configuration C' if its process can do a state transition labeled with the event on its
automaton based on its current state and message buffer. For a send event, the next state depends
only on the current state, while for a receive event, the next state also depends on the value(s) read
from the buffer (for some models, it is possible that no value is read).

Each model specifies a set of allowable sequences that constrains the possible inter-leavings of
events of all the processes in a schedule. A schedule S of protocol P is a finite or infinite sequence of
events of P. A run of protocol P in model M is a tuple R = (I,.S) where [is an initial configuration
of P and S is a schedule such that it is an allowable sequence in M and the events in it are enabled
and applied in turn starting from I.

Every model designates a subset of processes in its allowable sequences as faulty processes. As
will be seen later while defining decision task solvability, faulty processes are not required to decide
an output during their computation.

It will sometimes be convenient to assume protocols to be full-information, where every process
sends at first its initial state and in every subsequent send, the history of messages it sent and received
until that point. We can assume moreover that the automaton of each process is hard-coded into
every other process.

2.1 AMP; model

In the Asynchronous Message-Passing Model with f process failures (AMP), there is no fixed upper
bound on the time it takes for a message to be delivered nor on the relative speeds of the processors.
The send and receive events in AMP s have the following specifications:

(1) amp-send;(m): Process p; broadcasts message m to all processes including itself by adding m to
each of the message buffers.

(2) amp-recv;(m): Process p; retrieves message m from the message buffer.

(3) amp-recv;(L): Process p; tries to retrieve a message from its buffer but receives nothing. This
corresponds to the situation where messages placed in its buffer are still “in transit” and have
not yet arrived.

Dhrubajyoti Ghosh 4

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

The allowable sequences in AMP satisfy:

(1) Every amp-recv event is followed immediately by at most one amp-send event.

A process which has infinitely many events in the sequence is said to be non-faulty, and faulty
otherwise.

(2) There are at most f faulty processes.

(3) Non-faulty Liveness: Messages sent by a non-faulty process are received by all non-faulty pro-
cesses.

(4) Integrity: Every message received by a process was previously sent to the process.

(5) No duplicates: No message is received more than once at any process.

2.2 HO; model

The Heard-Of model was first formally defined in [5]. Here we consider one of its instances, the Heard-
Of model with f faults. In this synchronous model, the execution proceeds in rounds. In each round,
each process broadcasts a message, receives messages sent to it in that round and performs a local
computation determining what message it will send in the next round. It is possible for some messages
to get lost - if a process is not able to retrieve a message sent to it in some round, the message is lost
forever. Each process can lose up to f messages in each round of HOy. No process is defined to be
faulty. We now describe the model formally.
The send and receive events in HOy have the following specifications:

(1) ho-send;(m): Process p; broadcasts message m to all processes including itself by adding m to
each of the message buffers.

(2) ho-recv;(M): Process p; retrieves a subset M of all the messages in its buffer received during a
round.

Our notion of execution is a sequence of events, so although each round conceptually occurs
concurrently at all processes, we can choose a total order on the events that is consistent with the
order of events at each process. The allowable sequences in HO; have the following structure and
properties:

(1) Round-robin property: o is infinite and consists of a series of subsequences, where the first
subsequence has the form ho-sendi,...,ho-send,, and each latter subsequence has the form
ho-recvy, ho-sendy, ..., ho-recv,, ho-send,,. The kth ho-send; and kth ho-recv; events form round
k for process p;.

(2) Weak Liveness: For every ho-recv;(M) event in o, |[M| > n— f i.e. p; misses at most f messages
from other processes; it always receives its own message.

(3) Integrity: Every message received by process p; from process p; in round k was sent in round k
by pj.

(4) No Duplicates: Every receive event contains at most one message from each neighbor.

2.3 Decision tasks

In a run of a protocol, every process p; has a non-_L input value as part of its initial state, and decides
in special output registers that are part of their state, that are write-once and initialized with the
value | (meaning it has not decided yet). If a process does not decide, the value in its output register
remains L.

A task is a tuple (Z,0,A) where 7 is a set of input vectors (one input value for each process),
O is a set of output vectors (one output value for each process), and A : Z — 29 is a total relation

Dhrubajyoti Ghosh 5

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

that associates each input vector with a set of possible output vectors. An output value of L denotes
an undecided process. We require that if (I,0) € A, then for each O resulting after replacing some
items in O with L, (I,0) € A.

In a colorless task, processes are free to copy the inputs and outputs of other processes, meaning
we care only about relations between sets of input and output values instead of vectors. Formally, let
val(U) denote the set of non-L values in a vector U. In a colorless task, if for all input vectors I, 1’
and all output vectors O, 0" such that (I,0) € A, val(I) C val(I') and val(O") C val(O), we have
(I';O) € A and (I,0') € A.

A colored task is any task that is not colorless.

Example. An example of a colorless task is the binary consensus task. Every process has input value
0 or 1, and all processes that decide must have the same output value. Moreover, if all processes have
the same input v, this output must be v.

If a process copies another process’s output for its own, this does not violate the task conditions.
We can define this task through relations on the sets of input and output values given to the processes:

A = {({0,1},{0, 1}), ({0, 1}, {1, L}), ({0} , {0, L}), ({1}, {1, LH)} -

Example. An example of a colored task is the renaming task. Every process has a distinct input
value from an unbounded domain, and must decide an output from a smaller finite domain (of size at
least n). The task requires that every process that decides must have a distinct output.

Contrary to the above example, if a process copies another process’s output for its own, this would
violate the task condition.

2.4 Solving a decision task

A protocol P solves T in model M, if in every run R of P in M with input vector I and output vector
O, we have (1) (I,0) € A, and (2) O[i] = L only if p; is faulty in M in R.
Task T is solvable in model M if there exists a protocol P that solves T" in M.

Remark 2.1. Since there are no process failures in HOy, every process must decide in a run of a
protocol in HO;. Faulty processes in AMP on the other hand are not obliged to decide.

3 Simulations

A simulation system simulating model My in model M; consists of three layers: (1) n simulated
Processes pi,...,Pn, (2) n simulating machines Pi, ..., P,, with machine P; assigned to simulated
process p;, and (3) the communication system of M (see Figure 1). Each simulated process p; interacts
with its simulating machine P; via My-communication primitives, as if the communication system is
that of Ms. The simulating machines interact with each other through Mj using Mj-communication
primitives. Transitions between states in simulated processes and simulating machines are triggered
by the occurrence of events in M; and Ms. The occurrence of an event between p; and P; entails a
transition in both p; and P;. A simulation is described by specifying the automaton for the simulating
machines.

simulated process p;

Ma-send l I My-recv
simulating machine P,
Ml—sendl IMrI‘eCV

communication system M

Figure 1: System simulating model My in My

Dhrubajyoti Ghosh 6

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

A configuration of the system consists of the states of all the simulated processes, simulating
machines and their message buffers. In an initial configuration, every process and machine is in its
initial state and every message buffer is empty. Enabled events and schedules are defined in the same
manner as in the previous section. A run of a simulation consists of an initial configuration I and a
schedule « such that the events in « are enabled in turn starting from I.

Given run «, we define top(«) by restricting the initial configuration of « to the simulated processes
(and their buffers) and the schedule of « to the events of the top interface.

A detailed treatment of simulations can be found in Chapter 7 of [4].

4 Tasks solvable in HO, are solvable in AMP f

For this section, we assume that 0 < f < n. We will use the method of constructing a virtual round-
based structure in AMP; to show that tasks solvable in HOf are solvable in AMP ;. We first introduce
an intermediary model called the Crash-Faulty Heard-Of model with f faults, or CFHO .

4.1 The CFHO; model

While there is no notion of a faulty process in HOyf, we allow processes in CFHO; to crash, i.e.
eventually halt events, and define these processes to be faulty.
The communication primitives used in CFHOy are the same as in HOy, i.e. ho-send and ho-recv.
Allowable sequences in CFHO ; follow the same round-robin structure as in HO; except that certain
processes halt after a finite number of events. We say that these are crashed processes. If the last
event of a crashed process corresponds to round r, we say that the process crashes in round r.

Definition 4.1. We say that a process is faulty in a sequence o in CFHOy if it crashes in o and
non-faulty otherwise.

The other property requirements, namely Integrity, No Duplicates and Weak Liveness remain the
same as in HOy.

4.2 The result

Let 0 < f < n, and let T = (Z,0,A) be a task that is solvable in CFHO; by a protocol P =
{p1,...,pn}. We assume without loss of generality that there is always a send event enabled after
every receive event at each p;; this is valid as P can be taken to be a full-information protocol for
example.

We can construct a simulation system that simulates CFHO; in AMP/ so that for 1 <7 <n, (1)
the i-th simulated process is p;, and (2) the i-th simulation machine P; has the following specification:

Algorithm 1 Pseudocode for machine P;

1: Initialize counter round < 0
2: Initialize empty lists received|r| for all » > 0

3: When ho-send;(m) occurs:

4: round < round + 1
5: Enable amp-send;((m, round))
6: When amp-recv;({m,r)) occurs:

I~

Add m to received|r]

oo

. Enable ho-recv;(received[round]) when:
|received[round]| > n — f

©

To solve task T"in AMP, a protocol Q can be constructed by converting the simulation system into
a network of automata Q = {q1,...,¢,} such that ¢; runs both p; and the i-th simulation machine P;

Dhrubajyoti Ghosh 7

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

i
bi
pi
ho—sendl I ho-recv
ho-send (internal) l I ho-recv(internal)
P
B
amp-send J amp-recv ‘ .
amp-recv

amp-send l

internally, and interacts with the communication system of AMP; via amp-send and amp-recv events.
Events between p; and P; (namely ho-send and ho-recv) become part of ¢;’s internal computation.

The working of ¢; can be seen as follows: The input of ¢; is also used as the input for p;. When
p; does an internal ho-send(m) for round r to P;, ¢; does an amp-send((m,r)) and waits to receive at
least n — f messages of the form (-,r). Once that happens, it performs an internal ho-recv(M) from
P; to p;, where M consists of these messages with their round number tags removed, and changes p;’s
state accordingly. If p; internally decides an output o, then g; decides o as well.

In order to prove that protocol Q solves 7" in AMPy, consider any run v of Q in AMP, with
input vector I and output vector O. By considering the sequences of internal events during the local
computations at each ¢; as well as the events of «, we can obtain the underlying simulation schedule
for ~y, which we call a.

Since each ¢; in run 7 uses the output of p; in top(a) to decide, O is also the vector of outputs
decided by the p; in top(a) with input vector I. We will first show that (I,0) € A.

It is not necessary that top(c) has the round-robin pattern necessary for being allowable in CFHOj .
Due to the asynchronous nature of the actual communication system, machine P; could receive n — f
round-r tagged messages much earlier than machine P; does, meaning p; could already do a round-
(r + 1) ho-send before p; has a ho-recv for round r.

Consider o obtained by rearranging the schedule of top(a) to have the round-robin pattern and
such that the order of events at each p; is preserved. Clearly O is still the vector of outputs decided
by the p; on o with input vector /. We will show that o is a run in CFHO/, implying that (1,0) € A
as P solves T'in CFHO .

Lemma 4.2. ¢ satisfies Integrity, No Duplicates and Weak Liveness.

Proof. Consider an event ho-recv;(M) in round r of 0. When simulating machine P; enabled this
event, its round variable had value r. So M is the set received|r], which consists of messages in o
that were tagged with round number r, meaning that they must have been broadcast in round r in o.
This proves Integrity.

Since a process broadcasts at most one message every round and as «y satisfies Integrity in AMP ¢,
there cannot be any duplicated messages in ho-recv;(received[r]). So o satisfies the No Duplicates
property.

Lastly, event ho-recv;(received[r]) is enabled only when |received|r]] > n — f. Thus o satisfies
Weak Liveness since all messages in received[r] are from distinct processes. O

Thus o is a run in CFHOy, implying that (/,0) € A as P solves T in CFHOy.
Lemma 4.3. If q; is non-faulty in v then p; does not crash in o.

Proof. Let QnF be the set of processes in Q that are non-faulty in ~.

Let ¢; € Qnp. In round 0, ¢; does an internal ho-send from p; and does a corresponding round-0
tagged amp-send. As |Qnp| > n — f, there are n — f such amp-sends in 7. Thus ¢; receives n — f
round-0 tagged messages in AMP ¢ and enables a ho-recv from FP; to p;; in turn, p; enables a ho-send
for the next round.

Thus for every ¢; € QnF, process p; does a ho-send for round 1. We can now continue our argument
in an inductive fashion to conclude that p; does not crash in o. O

Dhrubajyoti Ghosh 8

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

Since p; decides an output if it does not crash in o, it follows that g; decides in ~ if it is non-faulty.
We conclude that protocol Q solves T in AMP f» SOt

Lemma 4.4. Any task that is solvable in CFHOy is also solvable in AMPy for 0 < f < n.
Lemma 4.5. Models CFHOy and HOy solve the same set of tasks for 0 < f < n.

Proof. Let T = (Z,0, A) be any decision task.

As the set of allowable sequences of HOy is a subset of that of CFHO/, any protocol solving 7" in
CFHO; must also solve T" in HOy.

Conversely, suppose that there exists a protocol P that solves T in HOy. We claim that P solves
T in CFHOy. Let o be a run of P with input vector I € Z in CFHO/ that yields output vector O.
Note that by Weak Liveness, there can be at most f crashed processes in «. Construct o’ from « such
that:

(1) o is identical to o for non-crashed processes of a.

(2) If p crashes in o and round r is the last time it sends a message, then it does not crash in o’
and keeps following protocol P, but no process hears from p after round 7 in o/. Also, p hears
from all > n — f non-crashed processes of a from round r onwards in o’

Thus ¢ can be viewed as a run of P with input vector I in HO; that yields some output vector
O'. As every process decides in o/, every non-crashed process in o must decide in « as well. Moreover,
any process that decides in o must decide the same value it decided in /. As (I,0') € A, it follows
from the definition of a task that (I,0) € A. Thus P solves T in CFHOy. O

Lemmas 4.4 and 4.5 combine to give:

Lemma 4.6. Any task that is solvable in HOy is also solvable in AMP; for 0 < f < n.

5 The SFHO; model

We now examine the conditions under which tasks solvable in AMP are solvable in HO;. Instead of
directly simulating AMP in HO ¢, we again introduce an intermediary model that is a variant of HO,
the Silenced-Faulty Heard-Of model or SFHOy, as it allows us to have cleaner and more organized
proofs. Moreover SFHO/ is an interesting candidate for future work.

The allowable sequences in SFHO; must satisfy exactly the same conditions as they do in HOy
(Round-robin property, Integrity, No Duplicates, Weak Liveness). The difference between the models
is that we can also declare a process to be faulty in SFHO. The concept of a faulty process in SFHO
differs from that in the CFHO; model. We first define the notion of a silenced process, which applies
to both HOy and SFHOy.

The reach of a process p from round r can be defined as the union of the set of processes which
hear from p in round r, the set of processes which hear from one of these processes in round r + 1, the
set of processes which hear from one of the previous processes (of rounds r and r + 1) in round r + 2
and so on. Formally,

Definition 5.1. Let REACH,(r) denote the set of processes which receive a message from process p
in round r.
The reach of process p between rounds r and s (where r < s), denoted REACH,(r, s), is defined as

REACH, (1, 5) def | REACH)(r), ifr=s
PR REACH,(r,s — 1)U quREACHp(m_l) REACH,(s), ifr<s

The reach of process p starting from round r, denoted REACH)(r, 00), is defined as

REACH, (7, 00) = U REACH,(, 5).

s>r

Dhrubajyoti Ghosh 9

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

Definition 5.2. A process p is said to be silenced if there exists an r > 0 such that |REACH,(r, 00)| <

f.
We say that it p is silenced from round r if r is the minimum for which this holds.
round round round
T r+1 r+2
.
. . . ° . .
.

Figure 2: Process p silenced from round r

Definition 5.3. A process is faulty in a sequence o in SFHOy if it is silenced in o.

We make a basic but crucial observation about non-silenced processes that also explains why we
call a process “silenced”.

Lemma 5.4. Let a be an allowable sequence in HOy or SFHO such that p is not silenced in oc. Then
for any r > 0, the reach of p from round r is the set of all processes, i.e. |REACHp(r,00)| = n.

Proof. As pisnot silenced, |REACH,(r, 00)| > f+1forallr > 0. As REACH,(r,7) C REACH,(r,7+1) C
REACH,(r,7 +2) C ... and as REACH,(r, 00) is finite, there exists s > 7 such that REACH,(r, 00) =
REACH, (7, 5). So REACH,(r,s) > f+1, which means that in round s+1, every process hears from some
process in REACH,(r, s). Thus |REACH,(r, s + 1)| = n, and we conclude that |[REACH, (7, 00)| = n. O

Another key property of HOy and SFHOy for f < n/2 which is not immediate is that the number
of silenced processes is at most f. Thus in any allowable sequence of SFHO¢, there can be at most f
faulty processes.

Lemma 5.5. Suppose that f < n/2 and let a be an allowable sequence in HOy or SFHO. There can
be at most f silenced processes in a.

Proof. Let S be the set of silenced processes. Suppose that p € S is silenced from round r,. We
claim that all processes in REACH,(7,) must be silenced. Indeed, if some process ¢ € REACH,(rp) is
not silenced, then by Lemma 5.4, |REACH,(1')| = n for some ' > r, and hence |REACH,(r,)| = n,
contradicting our assumption that p is silenced.

By the definition of reach, there is a round after which no message sent by a process in REACH,, (7))
is received by a process outside the set. As we have shown for any p € S that REACH,(rp) C S, it
follows that there is a round after which no message sent by a process in S is received by a process
outside S.

Claim 5.6. There exists at least one process that is not silenced in .

Proof. Assume the contrary. Then there exists some round R before which every process becomes
silenced. Thus in any round r > R, a message broadcast by any process must be received by at most
f processes in round r. Thus the total number of successfully received messages in round 7 is at
most nf. However, by Weak Liveness, this number is at least n(n — f). Since n — f > f, we get a
contradiction. O

Let p’ be a process that is never silenced in «, so p’ ¢ S. As p’ can miss at most f messages from
other processes in any round, we must have |S| < f. Thus there can be a total of at most f silenced
processes in a. O

Dhrubajyoti Ghosh 10

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

di
bi
pi
amp-send l Iamp—recv
amp-send (internal) J I anip-recv(internal)
P;
P
ho-send J { ho-recv ‘ 4
ho-recv

ho-send l

6 Tasks solvable in AMP; are solvable in SFHO; for f < n/2

Let 0 < f < n/2, and let T = (Z,0,A) be a task that is solvable in AMP; by a protocol P =
{p1,...,pn}. We assume without loss of generality that there is always a send event enabled after
every receive event at each p;; this is valid as P can be taken to be a full-information protocol for
example. We also assume that each machine P; has a hard-coded unique identifier id;.

We construct a simulation system that simulates AMPy in SFHO; so that for 1 <7 < n, (1) the
i-th simulated process is p;, and (2) the i-th simulation machine P; has the following specification:

Algorithm 2 Pseudocode for machine P;

1: Initialize list seen := () > History of messages received since the beginning
2: Initialize list old := () > History of messages received before p;’s last amp-send
3: Initialize variable latest := null

4: Initialize variable T" := 0 > For timestamping

When amp-send;(m) occurs:
latest « (id;,m,T)
Add latest to seen
Increment 7" by 1

9: In round r > 1:
10: ho-send; (seen)
11: ho-recv; (M)

12: Add previously unseen messages from M to seen and acknowledge those of type (s,m’,t) by
adding ack(id;, (s,m’,t)) to seen

13: If latest # null and ack(j, latest) occurs in M for > f distinct values of j # id;:
14: Initialize list pending := ()

15: Add messages of type (s, m/,t) in seen\old to pending

16: If pending is empty:

17: Enable amp-recv,;(L)

18: Else:

19: For each (s,m’,t) € pending: > Release all newly received messages
20: Enable amp-recv,(m’)

21: old < seen

22: latest <— null > Update old and reset latest for next AMP step

To solve task T' in AMPy, a protocol Q@ = {qi,...,¢,} can again be constructed in the same
manner as in Section 4, except that now the main events of ¢; are ho-send and ho-recv, while its
internal events are amp-send and amp-recv.

The working of ¢; can be seen as follows: The input of g; is also used as the input for p;. When
p; does an internal amp-send,;(m), P; adds (id;, m,T) to its seen list which ¢; then broadcasts in
every subsequent round of SFHO¢. Every ¢; that receives (id;,m,T) rebroadcasts it along with an
acknowledgement that it received (id;, m,T). However it is possible that ¢; is silenced, in which case
(id;,m,T) will not reach every machine, meaning not all of them will enable amp-recv;(m). As the

Dhrubajyoti Ghosh 11

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

simulated run has to satisfy Non-Faulty Liveness to be valid in AMPy, ¢; has to halt p;, which it does
by blocking all further amp-recv events from P; to p; until enough acknowledgements for (id;, m, T’
are received. If this is satisfied, ¢; is certain that everyone will receive (id;, m,T) and enables an
internal amp-recv;(m’) for every newly received message of the form (-, m/,-). If p; internally decides
an output o, then ¢; decides o as well.

Remark. Every P; tags every message m from p; with the identifier id; and a timestamp 7. This is
so that the machines can distinguish a message that is sent multiple times by a process or by different
processes.

In order to prove that protocol Q solves T' in SFHO/, consider any run v of @ in SFHO; with
input vector I and output vector O. As before, we can obtain the underlying simulation schedule for
~, which we call .. Since each ¢; in run «y uses the output of p; in top(a) to decide, O is also the vector
of outputs decided by the p; in top(a)). We will first show that (I,0) € A by showing that top(«) is
a run in AMP;.

Lemma 6.1. Simulated process p; is faulty in top(«) if and only if q; is faulty in .

Proof. Suppose that p; is faulty in top(«) but ¢; is not faulty in v. The last event at p; in « is some
amp-send,(m) event as we assumed that there is always an amp-send enabled after an amp-recv at
pi- Then P; has the non-null latest value of (id;,m,T) (for some T') for the remainder of a. As g;
is not silenced, (id;, m,T) must reach all processes by Lemma 5.4. All processes must then add an
acknowledgement for (id;, m,T) to their seen lists, and by Weak Liveness of HO¢, ¢; must eventually
receive n— f > f of these acknowledgements. But then P; must satisfy line 13 and enable an amp-recv
event in «, contradicting our assumption about p; halting. Thus ¢; must be silenced, hence faulty in
5.

Suppose that p; is not faulty, meaning that it has infinitely many amp-recv events in top(«). For
every amp-recv event at p;, process ¢; must have received at least f acknowledgements for a new latest
message of ¢;, meaning that its reach in any round has size more than f. Thus ¢; is not silenced, hence
not faulty in ~. O

By Lemma 5.5, there can be at most f faulty processes in v. So we get the following corollary:
Corollary 6.2. There are at most f faulty simulated processes in top(«).

Lemma 6.3. In top(«), let amp-send;(m) be an event at p; that is followed by an amp-recv event at
pi. Then m is received by all non-faulty simulated processes in top(c).

Proof. In «, once amp-send;(m) occurs at p;, (id;, m,T) (for some T) is included in subsequent ho-
send events of ¢;. By assumption, P; later enables an amp-recv to p;, so ¢; must have received at least
[acknowledgements for (id;, m,T') from other ¢;. So (id;, m,T) has reached at least f + 1 processes
of Q, and thus eventually reaches all non-faulty processes g;.

Any non-faulty simulated process p; has infinitely many amp-recv events in top(«). Due to line 19

of Algorithm 2, it follows that amp-recv,(m) is one of those events. O

Corollary 6.4. top(«) satisfies Non-faulty Liveness.

Proof. 1f p; is non-faulty in top(«), it always satisfies the condition of Lemma 6.3 and thus its messages
are received by all non-faulty processes in top(a).
O

Lemma 6.5. top(a) satisfies Integrity and No Duplicates.

Proof. Integrity: If amp-recv;(m) occurs at pj, then ¢; must have received (id;, m,T) (for some i and
T), which must have been sent by ¢; as y satisfies Integrity in SFHO;. Thus amp-send,(m) must have
occurred at p;.

No Duplicates: amp-recv;(m) occurs at p; when P; encounters the message (id;, m,T') in seen\ old
and does line 19. Once P; enables this event, (id;,m,T’) is moved to old, meaning the same event will
not occur again unless ¢; receives some message (id;;,m,T") where id; # id; or T' # T, in which case
there is no problem. O

Dhrubajyoti Ghosh 12

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

From corollaries 6.2 and 6.4 and Lemma 6.5, we get that top(«) is a run in AMP. Thus (1,0) € A
as P solves T' in AMPy. Since p; decides an output if it is non-faulty in top(c), it follows from
Lemma 6.1 that ¢; decides in «y if it is non-faulty. We conclude that protocol Q solves T" in SFHOy¢,
so:

Lemma 6.6. Any task that is solvable in AMPy is also solvable in SFHO; for 0 < f < n/2.

7 Comparing HO; and SFHO;

In this section, we study the conditions under which a task solvable in SFHO is also solvable in HO
and then merge our results with Lemmas 4.6 and 6.6.

7.1 HO; and AMP; solve the same colorless tasks for f < n/2

Suppose that 0 < f < n/2 and let T = (Z,0,A) be a colorless task that is solvable in SFHO¢ by
a full-information protocol P = {p1,...,pn}. Thus in a run o of P in SFHO; where process p is
silenced, p’s lack of an output value does not matter. We make the basic observation that if process
p; hears from process p; after a full-information protocol assigns output o to p;, then p; can determine
that p; decided on output o.

One can easily construct a full-information protocol @ = {q,...,¢,} that solves T'in HO;: Every
process g; runs p;, and if a process g; hears from process ¢; such that (1) ¢; has already decided on
output value o, and (2) process ¢; does not have an output yet, then ¢; decides output value o.

Let a be a run of Q with input vector I and output vector Og in HOy.

We first prove that all processes of Q decide on a value.

Lemma 7.1. All processes q; have non-L output values in Og.

Proof. We can view « as a run of P in SFHOy, so if p; is not silenced in «, it has an output. Thus if
q; is not silenced in «, it is certain to decide an output.

Since f < mn/2, at least n — f processes in Q are not silenced by Lemma 5.5 and decide by some
round R. In round R + 1, any ¢; that has not yet decided hears from a decided process by Weak
Liveness and copies its output. O

It remains to show that Q gives a valid output vector for the input vector of . Let Op be the
output vector of P on a. Then (I,0p) € A as o can be viewed as a run of P in SFHO .
Lemma 7.2. val(Og) C val(Op) and thus (I,0q) € A.

Proof. For the purpose of induction, we assume there is a round 0, where processes have not started
communicating. We prove the following statement by induction on the round number:
In round r > 0, if process q; decides on output o, then o € Op.

Base case: if process ¢; decides output o in round 0, it must be because p; decides o in « in round
0. Thus o € Op.

Inductive step: Suppose that the statement is true for all rounds r < R. Suppose ¢; decides output
o in round R + 1. This is because either:

e p; decides output o in « in round R 4+ 1, meaning o € Op, or

e ¢; heard from process ¢; which had decided output o before round R + 1. By the induction
hypothesis, o € Op.

This completes the inductive proof, and we conclude from the statement that val(Og) C val(Op). To
conclude, since (I,0p) € A, we have by the definition of colorless tasks that (I,0g) € A. O

Hence protocol Q solves colorless task 7' = (Z, 0, A) in HOy. This gives:
Lemma 7.3. For f <n/2, any colorless task that is solvable in SFHO is solvable in HOj.
Combining with Lemmas 4.6 and 6.6, we conclude that:

Theorem 7.4. For 0 < f <n/2, models HOy and AMP solve the same set of colorless tasks.

Dhrubajyoti Ghosh 13

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

7.2 HO; and AMP/ solve the same tasks for f <1

As there are no silenced processes in SFHOy, it is the same model as HOg and thus AMPg (by
Lemmas 4.6 and 6.6) for n > 0. Hence for the remainder of the section, we will assume that f = 1
and n > 2f = 2.

Let T = (Z,0,A) be a task (colorless or colored) that is solvable in SFHO; by a protocol P =
{p1,...,pn}. We assume without loss of generality that P is full-information. We shall show that the
following full-information protocol Q@ = {qi,...,q,} solves task T in HO;.

Definition 7.5. In the run of a full-information protocol in HO; or SFHOy, the initial view of a
process is defined to be its initial state and its view in round r is defined to be the history of messages
sent and received by it till round r of the run.

In every round, process ¢; runs p;, but the decision rule is modified:

Algorithm 3 Process g;
1: Round r: Send and receive messages and change the state of p; accordingly. If ¢; does not have
an output yet, then
If p; decides o in round r, then ¢; decides o
Else
If ¢; determines from its round-r view that every other process has decided, then
¢; considers an infinite run o’ such that for each ¢;, o is identical to the current run
till the round where ¢; last hears from g;, and no process is silenced in o’
6: q; decides the output of p; in o

Let a be a run of @ in HO; with input vector I and output vector Og.

Lemma 7.6. Suppose q; satisfies line 4 of Algorithm 3 in round r. There exists at least one run o
that q; can consider in line 5. Moreover, q; is able to decide in line 6.

Proof. Process g; starts constructing o/ by using the view of each ¢; for the round where ¢; last hears
from g;. It can then fill in the missing events in ¢’ till round r by going ever all possibilities (there is
at least one, namely the current run). From round r + 1 onwards, it assumes that all processes in o/
hear from everybody, so no process is silenced in o’.

Thus o' can be viewed as a run of P in SFHO; where p; is not silenced, so p; decides an output
in o/ and consequently ¢; is able to decide in line 6. O

Remark 7.7. From a practical perspective, g; cannot first construct an infinite run o’ and then run
p; on it. Instead, it must construct o’ round by round, running p; on it at the end of each round.

Lemma 7.8. If process q; is silenced from round R in «, then for every r > R + 2, its round-r view
contains the round-(r — 2) views of all processes.

Proof. Let r > R+2. In round r — 1, ¢; must receive the round-(r —2) views of at least n — 1 processes
including its own by Weak Liveness.

Suppose ¢; is a process whose round-(r — 2) view ¢; did not receive in round r — 1. As g; is silenced
from round R, no other process receives messages from ¢; in round r» — 1. So all the other processes
must hear from ¢; in round r — 1. Thus the n — 2 > 1 messages that g; receives from other processes
in round r contain ¢;’s round-(r — 2) view. O

We prove that all processes in Q decide on a value.
Lemma 7.9. All processes q; have non-L output values in Og.

Proof. We can view « as a run of P in SFHO¢, so if p; is not silenced in «, it has an output. Thus if
q; is not silenced in «, it is certain to decide an output.

Suppose that ¢; is silenced from round R in « and it does not get to decide using line 2. By
Lemma 7.8, in round r > R + 2, ¢;’s round-r view contains the round-(r — 2) views of all other
processes. As they are not silenced by Lemma 5.5, each of them decides on an output, say by round
R’. By round max (R, R') + 2, ¢; satisfies the condition in line 4 and hence decides by Lemma 7.6. [

Dhrubajyoti Ghosh 14

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

It remains to prove that Q gives a valid output vector for the input vector of a.
Lemma 7.10. (I,09) € A.

Proof. There can be at most one process ¢; that decides using line 6. Indeed, if there were two such
processes, both must have satisfied line 4, meaning each decided their outputs before the other; this
is absurd.

This gives us two cases:

1. All processes in Q decide their outputs using line 2. Then P must yield output vector Og on «
in SFHO;. Thus (I,0¢) € A.

2. Some process ¢; decides using line 6. Then all other processes g; decide in line 2 using the output
of their p;. Let o’ be the run considered by ¢; in line 5, which by Lemma 7.6 exists and on which
¢; decides the output of p;. The output of g; (j # 4) is the same in o/ as in « since the sequence
of events it uses to decide is the same. Since all processes in Q use their counterpart in P to
decide in o/, P must yield output vector Og on o/ in SFHO;. Thus (I,0g) € A.

O
Hence protocol Q solves task T'= (Z, O, A) in HO;. This gives:
Lemma 7.11. For f <1 and n > 2f, tasks that are solvable in SFHO[are solvable in HOy.
Combined with Lemmas 4.6 and 6.6, we conclude that

Theorem 7.12. For f <1 and n > 2f, models HOy and AMP solve the same set of tasks.

8 AMP; and HO; do not solve the same colored tasks for 1 < f < n/2

After proving that HO; and SFHO; solve the same set of tasks in the previous section, we naturally
attempted to extend the same idea in Algorithm 3 to the case where f > 1. The idea for f = 1 was
that if a process was silenced in HOq, it would eventually be able to determine the outputs of the other
processes and decide a compatible output for itself as well. However for f > 1, it is possible to have
a run in HOy with two silenced processes such that no process hears from them except themselves.
Since the two silenced processes will never have any information about each other, getting them to
decide compatible outputs is difficult. Gradually we became convinced that this was not possible; and
indeed we were able to show that this is the case.

The renaming task [3] with initial name space of potentially unbounded size M and new name
space of size N and M > N is defined as follows. Every process initially has as input a distinct
identifier from the initial name space. Every process with a non-1 output must return a distinct
output name from the new name space.

Without any restriction on the definition of task solvability, there exist trivial protocols for this
task, e.g., for N = n, the protocol where process p; always chooses i as output. Thus the processes’
indexing must be external, i.e., the renaming protocol must only depend on the initial names given to
the processes. We use the same assumption on renaming protocols as in [3]:

Anonymity assumption: For any initial name, any two processes must have the same corresponding
initial states. Moreover, let 7 be a permutation of {1,...,n}, let J and J’ be two initial configurations,
such that for any 1 < i < n, process p; in J and process pr(;) in J' are in the same state. Let R
be a run with initial configuration J and let m(R) be the run with initial configuration J’ and the
permutation 7 applied to the schedule of R (i.e., the sequence of events associated with p; is now
associated to pw(i)). Then p; in R and pr(;) in 7m(R) must have the same sequence of states.

Theorem 8.1. For n, f such that 2 < f < n/2, the renaming task with an initial name space of size
N +n —1 and new name space of size N =n + f is solvable in AMP but is not solvable in HOy.

Dhrubajyoti Ghosh 15

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

Proof. Tt has been shown in [3] that the renaming task with an unbounded initial name space and a
new name space of size N = n + f where f < n/2 is solvable in AMP;. Trimming the size of the
initial name space to N + n — 1 clearly preserves the result.

Assume to the contrary that there is a protocol P solving the task in HOy. We can assume that
P is a full-information protocol. We show how to obtain an input vector on which P fails.

Fix arbitrary distinct initial names x4, ..., x,_o for processes p1,...,pn_2. Let processes p,_1 and
pn have initial names a and b which shall be chosen later. Consider a run of P in HOy with input
vector (x1,...,ZTn—2,a,b) such that:

(1) p1,...,pn—2 hear from each other in every round.
(2) No process hears from processes p,—1 and p, except themselves in any round.
(3) Processes p,—1 and p,, get to hear from py,...,p,—2 in every round.

The output of a process can be seen as being determined by a decision function ¢ that maps
every sequence of views (Definition 7.5) at the process to an output value. Due to the anonymity
assumption, every process has the same ¢ function.

The sequence of views of p,_; is the value of some function f(a) that does not depend on b,
and its new name is some value 6(f(a)). The sequence of views of p,—1 and p, are symmetric,
so the sequence of views of p, is f(b), so its new name is J(f(b)). As there are N + 1 initial

names apart from z1,...,z,_9 and only N possible new names, there exist values for a, b such that
such that z1,...,2,-9,a,b are distinct and §(f(a)) = d(f(b)). Thus P fails on the input vector
(x1,...,Tn—2,a,b); a contradiction. O

9 Conclusion and future work

We have shown that in the context of solvability of colorless tasks, AMP; and HO; coincide for
f < n/2. For colored tasks, this is true if f =1 (and n > 2), and false if 1 < f < n/2. The reason for
this split in the case of colored tasks is explained by the presence of silenced processes in HOy. For
f =1, there is at most one silenced process; it will eventually learn the outputs of the other processes
and accordingly decide an output that is compatible. For f > 1, there can be two such processes who
are never heard of by any other process; this makes it difficult for them to decide compatible outputs.

We have not yet addressed the question for the case where f > n/2. We can also ask if there is
a class of tasks larger than that of colorless tasks for which the two models coincide. A comparison
of AMP; and SFHO; would also be interesting. Indeed, our results show that like HO ¢, the SFHO
model coincides with AMP ¢ for colorless tasks where f < n/2 and colored tasks where f = 1. However
it is not clear whether they agree or differ for the case of colored tasks where 1 < f < n/2.

There is also a need to modify the definition of task solvability. The general definition requires
the existence of any collection of processes solving the task; this would trivialize the renaming task in
any model. Rather, the definition of solvability should depend on the task and should specify what
protocols can be used to solve it.

References

[1] Yehuda Afek and Eli Gafni. Asynchrony from synchrony. In Distributed Computing and Net-
working, volume 7730 of Lecture Notes in Computer Science, pages 225-239. Springer Berlin /
Heidelberg, Germany, 2012.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,
21(4):181-185, 1985.

[3] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Riidiger Reischuk. Renaming in
an asynchronous environment. J. ACM, 37(3):524-548, July 1990. doi:10.1145/79147.79158.

Dhrubajyoti Ghosh 16

https://doi.org/10.1145/79147.79158

Equivalence of Round-Based and Non-Round-Based Message-Passing Models

[4] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004.

[5] Bernadette Charron-Bost and André Schiper. The heard-of model: Computing in distributed
systems with benign failures. 2007. Replaces TR-2006: The Heard-Of Model: Unifying all
Benign Failures. URL: http://infoscience.epfl.ch/record/109375.

[6] Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49-71, April 2009. doi:10.1007/
s00446-009-0084-6.

[7] Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Petr Kuznetsov. Wait-freedom
with advice. Distributed Comput., 28(1):3-19, 2015. URL: https://doi.org/10.1007/
s00446-014-0231-6, doi:10.1007/500446-014-0231-6.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374-382, apr 1985. doi:10.1145/3149.214121.

[9] Eli Gafni and Petr Kuznetsov. On set consensus numbers. Distributed Comput., 24(3-
4):149-163, 2011. URL: https://doi.org/10.1007/s00446-011-0142-8, doi:10.1007/
S00446-011-0142-8.

[10] Eli Gafni and Giuliano Losa. Invited Paper: Time Is Not a Healer, but It Sure Makes Hind-
sight 20:20. In Shlomi Dolev and Baruch Schieber, editors, Stabilization, Safety, and Secu-
rity of Distributed Systems, pages 62-74. Springer Nature Switzerland, 2023. doi:10.1007/
978-3-031-44274-2_6.

Dhrubajyoti Ghosh 17

http://infoscience.epfl.ch/record/109375
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-014-0231-6
https://doi.org/10.1007/s00446-014-0231-6
https://doi.org/10.1007/S00446-014-0231-6
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/s00446-011-0142-8
https://doi.org/10.1007/S00446-011-0142-8
https://doi.org/10.1007/S00446-011-0142-8
https://doi.org/10.1007/978-3-031-44274-2_6
https://doi.org/10.1007/978-3-031-44274-2_6

	Introduction
	Paper organisation

	Models of computation
	AMPf model
	HOf model
	Decision tasks
	Solving a decision task

	Simulations
	Tasks solvable in HOf are solvable in AMPf
	The CFHOf model
	The result

	The SFHOf model
	Tasks solvable in AMPf are solvable in SFHOf for f < n/2
	Comparing HOf and SFHOf
	HOf and AMPf solve the same colorless tasks for f < n/2
	HOf and AMPf solve the same tasks for f 1

	AMPf and HOf do not solve the same colored tasks for 1 < f < n/2
	Conclusion and future work

