Solutions to DM 4

Homework 1. Build the Büchi automaton for the following formulae using the method seen during the course: (1) $G(a \to (b \cup c))$, and (2) $G \vdash b \to F \vdash G = a$.

Solution. Too big to do without losing sanity. Apologies for having given this question. \Box

Homework 2. Give an LTL formula φ_n of size O(n) over $AP = \{p_0, \ldots, p_{n-1}\}$ that simulates an *n*-bit counter. To be more precise, the models of φ_n are exactly the infinite words in $(2^{AP})^{\omega}$ where, at each position *i*, the valuation of (p_0, \ldots, p_{n-1}) encodes an *n*-bit binary number v_i , and for all $i \geq 0$, $v_{i+1} = (v_i + 1) \pmod{2^n}$.

Also provide a tight lower bound on the size of any equivalent Büchi automaton.

Solution. One possible LTL formula would be

$$\mathsf{G}(p_{n-1} \not\leftrightarrow \mathsf{X}\, p_{n-1}) \land \bigwedge_{i=0}^{n-2} \mathsf{G}\left((p_i \not\leftrightarrow \mathsf{X}\, p_i) \leftrightarrow (p_{i+1} \land \neg\, \mathsf{X}\, p_{i+1})\right).$$

Here we assume that if i < j then p_i represents a more significant bit than p_j . Essentially, the LTL formula says that the least significant bit always alternates between words, and that the i-th bit changes only when the (i + 1)-th bit changes from 1 to 0.

Any corresponding Büchi automaton \mathcal{A} must have at least 2^n states. Assume the contrary. There are exactly 2^n words $\{w_i\}_{1\leq i\leq 2^n}$ that can be accepted by \mathcal{A} ; each w_i satisfies the counter behavior and its first letter is interpreted as the binary representation of i. Each word w_i can be written as b_i^{ω} where $|b_i| = 2^n$. As \mathcal{A} has less than 2^n states, there exist $i \neq j$ and a state q such that the accepting runs of \mathcal{A} on w_i and w_j both reach q after the first iteration of b_i and b_j respectively. It follows that the word $b_i b_j^{\omega}$ is also accepted by \mathcal{A} . However it violates the expected behavior of an n-bit counter, so we have a contradiction.

The lower bound of 2^n is a tight lower bound, as demonstrated by the following automaton where all states are initial states, q_i is the only final state, and $x_i \in 2^{AP}$ is naturally obtained from the n-bit binary representation of i.

