MPRI 1-22 Basics of Verification 2025

Solutions to TD6

1 SCC-based Biichi Emptiness test

1. By way of contradiction, suppose that some inactive SCC C' in the explored graph
is not an SCC of B. Then is a state or an transition outside the explored graph
that is reachable from C'. However, since the DF'S has concluded at every state of
C, any state or transition reachable from C' must have been visited by the time C'
becomes inactive.

2. In any active SCC, there is a state v on the search path, i.e., the DFS has not
yet concluded at v. Since the root of the SCC is visited before v, the DFS should
conclude at the root after it concludes at v. Thus each active SCC has its root on
the search path.

Let s be an active state, and suppose that it is in the active SCC of r;. By the
definition of a root, r;.num < s.num. To show that s.num < r;1.num, suppose
on the contrary that r;,1.num < s.num. Since r;y; is on the search path when s
is visited, there is a path from r;,; to s. But then we obtain a cycle as there are
paths from s to r; and from r; to r;.1. Thus r;.num < s.num < r;;1.num.

For the converse direction, assume that r;.num < s.num < r;;1.num. Assume that
s does not belong to the active SCC of r;. Then s must belong to the active SCC of
some r; where j # ¢. We cannot have j < 4, because then we would have a path in
the active graph from r; to s, then from s to r; and then from r; to r;. This shows
that the root of a new active SCC occurs between r; and r;,1, which is not possible.

3. Algorithm 2 maintains a stack of active SCCs of the explored subgraph. When a
back-edge is found to one of the active SCCs, closing a cycle, the SCCs forming that
cycle are merged.

4. e We prove this by induction on the number of active SCCs in the explored
graph. The induction hypothesis is that if the active graph consists of the
SCCs (Y, ..., C,, where r; is the root of C; and r;.num increases with i, then
W consists of (r1,C4), ..., (rm, Cn) (rightmost element at the top).

Assume that the I.H. is true for some value of m. Continuing, DFS looks at
the successor ¢ of some vertex s € C,,. For the cases where t is not visited or
is visited but not active, it is easy to check that the I.H. holds. Suppose ¢ is
active and that it belongs to some C};, where ¢ < m. Then the new active SCCs
become Ci,...,C;_1,C; U---UC,,, with r; being the root of C; U ---UC,,.
To see that this is also reflected in the stack W, note that the algorithm
iteratively keeps popping (r;, C;) till j = ¢ and obtains D = C; U---U(C,,, and
finally pushes (r;, D) onto W.

e A vertex v becomes inactive once the DF'S concludes at the root r; of its active
SCC .
Right before the DFS concludes at r;, (r;, C;) must be on the top of W. Once
the DFS concludes at r;, Algorithm 2 does not find any more new transitions
out of r; and goes to line 21, and marks all states in C; as inactive. Thus the
algorithm behaves correctly.

MPRI 1-22 Basics of Verification 2025

tree with 1 million states
(none accepting)

Figure 1: Example in which nested DFS takes a long time to find a counterexample

5. Consider the point at which the explored graph contains a counterexample for the
first time. This must have happened because an edge (ug, u;) was added, completing

the cycle (uq,us,...,ug,uq) and for some 1 < f < k, state uy is an accepting
state. The following sequence of observations show that the algorithm returns false
immediately.

Observation 1: State u; must have been an active state at this time; otherwise
if u; was inactive, by Question 1 the cycle (uy,ug, ..., u, u;) would belong to the
inactive SCC containing u;, which is a contradiction since wy is definitely active
when (ug, u;) is added. O

Observation 2: Stack W must have contained (us, {uy}); otherwise W would have
contained some element (r,C') where uy € C' and |C| > 2, but then a counterex-
ample would already have been formed before (uy,u;) was added. O

Thus Algorithm 2 starts popping elements from W, merging the second components
until the first component becomes less than wu;.num. We need to show that it
encounters (ug, {us}).

Observation 3: usnum > u;.num. Suppose on the contrary that up.num <
uy.num. Then then there is a path from uy to u; in the explored graph that existed
before (ug,u;) was added. But then joining this path with the path (uq, ..., uy)
implies that there was a counterexample in the explored graph before (uy,u;) was
added. [

Thus the algorithm encounters (us, {us}) and returns false.

6. Instead of keeping track only of the roots of the SCCs and said SCCs, we also keep
track of the final sets that have a representative in the SCC (that is, we keep track
of the (r,C, R) where R C {1,...,n} is such that i € R if and only if there exists
v in C such that v € F;). We then return false when we find an SCC containing a
representative of each final set and a non-trivial path.

7. The nested DFS algorithm uses only two bits per state. Algorithm 2 assigns a
number to each state, thus requires more space.

Algorithm 2 outputs false as soon as a counterexample occurs in the explored graph,
whereas this is not the case for the nested DFS algorithm, as demonstrated by the
example in Figure 1.

2 Exercise 2

1. Consider some LTL(AP,U) formula ¢. We will show by induction that for any
stuttering equivalent words o and p that we have o = ¢ < p = .

MPRI 1-22 Basics of Verification 2025

e The cases p = T,p € AP, =, 1 V g are trivial.

e Consider then ¢ = 1, U ¢y and suppose that for any two stuttering equivalent
words ¢ and v we have ¢ = ¢ iff v = ¢y and ¢ | i iff v | ¢y Take two
stuttering equivalent words ¢ and p. Consider then two sequences 0 = iy <
iy < ... and 0= jy < ji <...such that for all £ we have 0y, = -+ =0y, , 1 =
pj, = =+ = Pj,.,—1- Now suppose there exists & such that o,k |= 1 and for
all ¥ < k we have o,k’ = 1;. Consider ¢ such that i, < k < ip.;. We can
easily show that o>, and p;, are stuttering equivalent, and hence p, j, = 2.
Similarly, for all n such that n < j, there exists ' < (£ such that o;_, and
p>n are stuttering equivalent (¢ is such that j» < n < jpyy and ¢ < £), and
since o,ip = 11 we have p,n = ¢;. Hence we have shown 0,0 = ¢ implies
p,0 = ¢ and since ¢ and p play a symmetrical role the mirror implication is
also true.

2. Consider the sequence g, 71, ... defined as
[ioiz 0

e for k > 0, i1 is the smallest number strictly greater than iy such that o;,_, #

o0;, if one such number exists, 5 4+ 1 else.

Then o' defined by o}, = 0;, is the only stutter-free word that is stuttering equivalent
to o.

3. (a) Ifastutter-free word o is such that 0,0 = aAXa then it is such that oy = a and
o1 = a, hence by definition ¢ = a*. Thus 1, , = =(T U =a) = Ga works.

(b) The formula ¥, = a A (a U b) works.

4 er(T)=T
e 7(p) = p where p € AP
o 7o) = ()
(

o 7(11 Uthy) = 7(¢1) U (1h2)

e The case X1 is more involved. It can be rewritten as

Xp=\/anXy="1\/ aAVX(¢Ab)]

a€X a€y bex

=V (aAX(wAa))v\/aAX(wAb)]

acXx L b#a

Following the same ideas in Question 3, we see that for stutter-free words,
a A X Aa)and Ga A1 are equivalent, and if a # b then a A X(b A ¢) and
aA(aU(bA1))) are equivalent. Hence:

T(Xy)=\/ ((G aAT()V\ an(aU®A T(?ﬂ))))

aeX a#b

MPRI 1-22 Basics of Verification 2025

5. For any word o, let f(o) be the only stutter-free word that is stuttering-equivalent to
o (as seen in Question 2). Then if L(y) is stutter-invariant we have 0 = ¢ & f(0) =
¢ < f(o) E 7(p). However from Question 1 we know that L(7(p)) is stutter-
invariant, and hence f(o) | 7(¢) < 0 = 7(¢). This means o0 = ¢ < o0 | 7(p)
and thus L(p) = L(7(¢)).

	SCC-based Büchi Emptiness test
	Exercise 2

