
MPRI 1-22 Basics of Verification 2025

Solutions to TD6

1 SCC-based Büchi Emptiness test

1. By way of contradiction, suppose that some inactive SCC C in the explored graph
is not an SCC of B. Then is a state or an transition outside the explored graph
that is reachable from C. However, since the DFS has concluded at every state of
C, any state or transition reachable from C must have been visited by the time C
becomes inactive.

2. In any active SCC, there is a state v on the search path, i.e., the DFS has not
yet concluded at v. Since the root of the SCC is visited before v, the DFS should
conclude at the root after it concludes at v. Thus each active SCC has its root on
the search path.

Let s be an active state, and suppose that it is in the active SCC of ri. By the
definition of a root, ri.num ≤ s.num. To show that s.num < ri+1.num, suppose
on the contrary that ri+1.num ≤ s.num. Since ri+1 is on the search path when s
is visited, there is a path from ri+1 to s. But then we obtain a cycle as there are
paths from s to ri and from ri to ri+1. Thus ri.num ≤ s.num < ri+1.num.

For the converse direction, assume that ri.num ≤ s.num < ri+1.num. Assume that
s does not belong to the active SCC of ri. Then s must belong to the active SCC of
some rj where j ̸= i. We cannot have j < i, because then we would have a path in
the active graph from ri to s, then from s to rj and then from rj to ri. This shows
that the root of a new active SCC occurs between ri and ri+1, which is not possible.

3. Algorithm 2 maintains a stack of active SCCs of the explored subgraph. When a
back-edge is found to one of the active SCCs, closing a cycle, the SCCs forming that
cycle are merged.

4. • We prove this by induction on the number of active SCCs in the explored
graph. The induction hypothesis is that if the active graph consists of the
SCCs C1, . . . , Cm where ri is the root of Ci and ri.num increases with i, then
W consists of (r1, C1), . . . , (rm, Cm) (rightmost element at the top).

Assume that the I.H. is true for some value of m. Continuing, DFS looks at
the successor t of some vertex s ∈ Cm. For the cases where t is not visited or
is visited but not active, it is easy to check that the I.H. holds. Suppose t is
active and that it belongs to some Ci, where i ≤ m. Then the new active SCCs
become C1, . . . , Ci−1, Ci ∪ · · · ∪ Cm, with ri being the root of Ci ∪ · · · ∪ Cm.

To see that this is also reflected in the stack W , note that the algorithm
iteratively keeps popping (rj, Cj) till j = i and obtains D = Ci ∪ · · · ∪Cm, and
finally pushes (ri, D) onto W .

• A vertex v becomes inactive once the DFS concludes at the root ri of its active
SCC Ci.

Right before the DFS concludes at ri, (ri, Ci) must be on the top of W . Once
the DFS concludes at ri, Algorithm 2 does not find any more new transitions
out of ri and goes to line 21, and marks all states in Ci as inactive. Thus the
algorithm behaves correctly.

MPRI 1-22 Basics of Verification 2025

tree with 1 million states
(none accepting)

Figure 1: Example in which nested DFS takes a long time to find a counterexample

5. Consider the point at which the explored graph contains a counterexample for the
first time. This must have happened because an edge (uk, u1) was added, completing
the cycle (u1, u2, . . . , uk, u1) and for some 1 ≤ f ≤ k, state uf is an accepting
state. The following sequence of observations show that the algorithm returns false
immediately.

Observation 1: State u1 must have been an active state at this time; otherwise
if u1 was inactive, by Question 1 the cycle (u1, u2, . . . , uk, u1) would belong to the
inactive SCC containing u1, which is a contradiction since uk is definitely active
when (uk, u1) is added.

Observation 2: StackW must have contained (uf , {uf}); otherwiseW would have
contained some element (r, C) where uf ∈ C and |C| ≥ 2, but then a counterex-
ample would already have been formed before (uk, u1) was added.

Thus Algorithm 2 starts popping elements fromW , merging the second components
until the first component becomes less than u1.num. We need to show that it
encounters (uf , {uf}).
Observation 3: uf .num > u1.num. Suppose on the contrary that uf .num <
u1.num. Then then there is a path from uf to u1 in the explored graph that existed
before (uk, u1) was added. But then joining this path with the path (u1, . . . , uf)
implies that there was a counterexample in the explored graph before (uk, u1) was
added.

Thus the algorithm encounters (uf , {uf}) and returns false.

6. Instead of keeping track only of the roots of the SCCs and said SCCs, we also keep
track of the final sets that have a representative in the SCC (that is, we keep track
of the (r, C,R) where R ⊆ {1, . . . , n} is such that i ∈ R if and only if there exists
v in C such that v ∈ Fi). We then return false when we find an SCC containing a
representative of each final set and a non-trivial path.

7. The nested DFS algorithm uses only two bits per state. Algorithm 2 assigns a
number to each state, thus requires more space.

Algorithm 2 outputs false as soon as a counterexample occurs in the explored graph,
whereas this is not the case for the nested DFS algorithm, as demonstrated by the
example in Figure 1.

2 Exercise 2

1. Consider some LTL(AP,U) formula φ. We will show by induction that for any
stuttering equivalent words σ and ρ that we have σ |= φ⇔ ρ |= φ.

MPRI 1-22 Basics of Verification 2025

• The cases φ = ⊤, p ∈ AP,¬φ, φ1 ∨ φ2 are trivial.

• Consider then φ = ψ1 U ψ2 and suppose that for any two stuttering equivalent
words ζ and γ we have ζ |= ψ1 iff γ |= ψ1 and ζ |= ψ2 iff γ |= ψ2. Take two
stuttering equivalent words σ and ρ. Consider then two sequences 0 = i0 <
i1 < . . . and 0 = j0 < j1 < . . . such that for all ℓ we have σiℓ = · · · = σiℓ+1−1 =
ρjℓ = · · · = ρjℓ+1−1. Now suppose there exists k such that σ, k |= ψ2 and for
all k′ < k we have σ, k′ |= ψ1. Consider ℓ such that iℓ ≤ k < iℓ+1. We can
easily show that σ≥k and ρjℓ are stuttering equivalent, and hence ρ, jℓ |= ψ2.
Similarly, for all n such that n < jℓ there exists ℓ′ < ℓ such that σi≥ℓ′

and
ρ≥n are stuttering equivalent (ℓ′ is such that jℓ′ ≤ n < jℓ′+1 and ℓ′ < ℓ), and
since σ, iℓ′ |= ψ1 we have ρ, n |= ψ1. Hence we have shown σ, 0 |= φ implies
ρ, 0 |= φ and since σ and ρ play a symmetrical role the mirror implication is
also true.

2. Consider the sequence i0, i1, . . . defined as

• i0 = 0

• for k ≥ 0, ik+1 is the smallest number strictly greater than ik such that σik+1
̸=

σik if one such number exists, ik + 1 else.

Then σ′ defined by σ′
k = σik is the only stutter-free word that is stuttering equivalent

to σ.

3. (a) If a stutter-free word σ is such that σ, 0 |= a∧X a then it is such that σ0 = a and
σ1 = a, hence by definition σ = aω. Thus ψa,a = ¬(⊤ U ¬a) = G a works.

(b) The formula ψa,b = a ∧ (a U b) works.

4. • τ(⊤) = ⊤
• τ(p) = p where p ∈ AP

• τ(¬ψ) = ¬τ(ψ)
• τ(ψ1 ∨ ψ2) = τ(ψ1) ∨ τ(ψ2)

• τ(ψ1 U ψ2) = τ(ψ1) U τ(ψ2)

• The case Xψ is more involved. It can be rewritten as

Xψ =
∨
a∈Σ

a ∧ Xψ =
∨
a∈Σ

[
a ∧

∨
b∈Σ

X(ψ ∧ b)

]

=
∨
a∈Σ

[
(a ∧ X(ψ ∧ a)) ∨

∨
b̸=a

a ∧ X(ψ ∧ b)

]

Following the same ideas in Question 3, we see that for stutter-free words,
a ∧ X(ψ ∧ a) and G a ∧ ψ are equivalent, and if a ̸= b then a ∧ X(b ∧ ψ) and
a ∧ (a U (b ∧ ψ)) are equivalent. Hence:

τ(Xψ) =
∨
a∈Σ

(
(G a ∧ τ(ψ)) ∨

∨
a̸=b

a ∧ (a U (b ∧ τ(ψ)))

)

MPRI 1-22 Basics of Verification 2025

5. For any word σ, let f(σ) be the only stutter-free word that is stuttering-equivalent to
σ (as seen in Question 2). Then if L(φ) is stutter-invariant we have σ |= φ⇔ f(σ) |=
φ ⇔ f(σ) |= τ(φ). However from Question 1 we know that L(τ(φ)) is stutter-
invariant, and hence f(σ) |= τ(φ) ⇔ σ |= τ(φ). This means σ |= φ ⇔ σ |= τ(φ)
and thus L(φ) = L(τ(φ)).

	SCC-based Büchi Emptiness test
	Exercise 2

