TD 6: Emptiness Test for Büchi Automata, Partial-Order Reduction

Exercise 1 (SCC-based Büchi Emptiness Test). Consider an execution of Algorithm 1 on some Büchi automaton $\mathcal{B} = (\Sigma, S, s_0, \delta, F)$.

At each point during the DFS, we define the search path as the sequence of visited states for which the DFS call has not yet terminated (in the order in which they are visited), and the explored graph of \mathcal{B} as the subgraph containing all visited states and explored transitions. We call an SCC of the explored graph active if the search path contains at least one of its states. A state is active if it is part of an active SCC in the explored graph (it is not necessary for the state itself to be on the search path). The active graph is the subgraph of the explored graph induced by the active states.

For all strongly connected component $C \subseteq S$ of \mathcal{B} , we call root of C the state of C that is visited first during the DFS, i.e. the node r_C such that $r_C.num = \min\{s.num \mid s \in C\}$ at the end of the DFS. We define similarly the root of an SCC in the explored graph.

Algorithm 1 Depth-first-search

```
1. nr = 0;

2. visited = \{ \};

3. dfs(s_0);

4. exit;

dfs(s) :

1. add s to visited;

2. nr = nr + 1;

3. s.num = nr;

4. for all t \in succ(s) do

5. if t not in visited then

6. dfs(t)

7. end if

8. end for
```

- 1. Show that an SCC of the explored graph that is inactive is also an SCC of \mathcal{B} .
- 2. Show that the roots of the SCCs in the active graph are a subsequence $r_1
 ldots r_m$ of the search path, and that an activated node s is in the active SCC of r_i if and only if i < m and $r_i.num \le s.num < r_{i+1}.num$, or i = m and $r_i.num \le s.num$.
- 3. Figure out what Algorithm 2 roughly does.
- 4. Show that Algorithm 2 maintains the following invariants:
 - the stack W contains the sequence $(r_1, C_1) \dots (r_m, C_m)$ where $r_1 \dots r_m$ is the sequence of roots of the active graph, and C_i is the active SCC of r_i ,
 - for all nodes s, s. active is true if and only if s is active.
- 5. Show that Algorithm 2 returns *true* iff the language of the input Büchi automaton is empty, and that it terminates as soon as the explored graph contains a counterexample.
- 6. Adapt Algorithm 2 to test emptiness of a generalized Büchi automaton with acceptance sets F_1, \ldots, F_n .

7. Compare with the nested DFS algorithm from the lectures.

Algorithm 2 Emptiness Test

```
1. nr = 0;
 2. visited = \{\};
 3. initialize empty stack {\cal W}
 4. dfs(s_0);
 5. return true;
dfs(s):
 1. add s to visited;
 2. s.active = true;
 3. nr = nr + 1;
 4. s.num = nr;
 5. push (s, \{s\}) onto W;
 6. for all t \in \operatorname{succ}(s) do
      if t not in visited then
        dfs(t)
 8.
      else if t.active then
 9.
        D = \{ \};
10.
11.
        repeat
           pop (u, C) from W;
12.
           if u is accepting then
13.
             return false
14.
           end if
15.
           merge C into D;
16.
        until u.num \leq t.num;
17.
        push (u, D) onto W;
                                  //u here is the last value taken by u in the repeat-until block
18.
      end if
19.
20. end for
21. if s is the top root in W then
      pop (s, C) from W;
      for all t in C do
23.
24.
        t.active = false
      end for
25.
26. end if
```

Exercise 2. Fix a set of atomic propositions AP, and $\Sigma = 2^{\text{AP}}$. Recall that $\sigma, \rho \in \Sigma^{\omega}$ are stuttering equivalent, written $\sigma \sim \rho$, when there exist infinite integer sequences $0 = i_0 < i_1 < \cdots$ and $0 = k_0 < k_1 < \cdots$ such that for all $\ell \geq 0$,

$$\sigma(i_{\ell}) = \sigma(i_{\ell} + 1) = \dots = \sigma(i_{\ell+1} - 1) = \rho(k_{\ell}) = \rho(k_{\ell} + 1) = \dots = \rho(k_{\ell+1} - 1),$$

where $\sigma(i) \in \Sigma$ denotes the letter at position i in σ .

A language $L \subseteq \Sigma^{\omega}$ is stutter-invariant if for all stuttering equivalent words $\sigma, \rho \in \Sigma^{\omega}$, we have $\sigma \in L$ if and only if $\rho \in L$.

1. Show that if φ is an LTL(AP, U) formula, then $L(\varphi) = \{ \sigma \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi \}$ is stutter-invariant.

A word $\sigma \in \Sigma^{\omega}$ is stutter-free if, for all $i \in \mathbb{N}$, either $\sigma(i) \neq \sigma(i+1)$, or $\sigma(i) = \sigma(j)$ for all $j \geq i$.

- 2. Show that for all $\sigma \in \Sigma^{\omega}$, there exists a unique $\sigma' \in \Sigma^{\omega}$ such that σ' is stutter-free and $\sigma \sim \sigma'$.
- 3. Given $a \in \Sigma$, we write a for the formula $\bigwedge_{p \in a} p \wedge \bigwedge_{p \notin a} \neg p$. That is, $\sigma, i \models a$ if and only if $\sigma(i) = a$.
 - (a) Give a formula $\psi_{a,a}$ in LTL(AP, U) such that for all stutter-free words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,a}$ if and only if $\sigma, 0 \models a \wedge X a$.
 - (b) Let $a, b \in \Sigma$ with $a \neq b$. Give a formula $\psi_{a,b}$ in LTL(AP, U) such that for all stutter-free words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \psi_{a,b}$ if and only if $\sigma, 0 \models a \wedge Xb$.
- 4. Let φ be any LTL(AP, X, U) formula. Construct by induction on φ an LTL(AP, U) formula $\tau(\varphi)$ such that for all *stutter-free* words $\sigma \in \Sigma^{\omega}$, we have $\sigma, 0 \models \varphi$ iff $\sigma, 0 \models \tau(\varphi)$.
- 5. Let φ be an LTL(AP, X, U) formula such that $L(\varphi)$ is stutter-invariant. Show that $L(\varphi) = L(\tau(\varphi))$.