

TD 7: Partial-Order Reduction

Reminder:

(C0) $red(s) = \emptyset$ iff $en(s) = \emptyset$.

(C1) For every path $s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} s_n \xrightarrow{a} t$ in \mathcal{K} (for any $n \geq 0$), if $a \notin red(s)$ and a depends on some action in $red(s)$ (i.e. there exists $b \in red(s)$ such that $(a, b) \notin I$), then there exists $1 \leq i \leq n$ such that $a_i \in red(s)$.

(C2) If $red(s) \neq en(s)$, then all actions in $red(s)$ are invisible.

(C3) For all cycles in the reduced system \mathcal{K}' , the following holds: if $a \in en(s)$ for some state s in the cycle, then $a \in red(s')$ for some (possibly other) state s' in the cycle.

Exercise 1. Consider the condition (C'_1) : for any s with $red(s) \neq en(s)$, any a in $red(s)$ is independent from every b in $en(s) \setminus red(s)$.

1. Show that (C_1) implies (C'_1) .
2. Show that $(C_0), (C'_1), (C_2), (C_3)$ are not sufficient to ensure stuttering equivalence, i.e., that there exists a Kripke structure \mathcal{K} and an assignment red satisfying conditions $(C_0), (C'_1), (C_2), (C_3)$ but such that the reduced system \mathcal{K}' induced by red is not stuttering equivalent to \mathcal{K} .

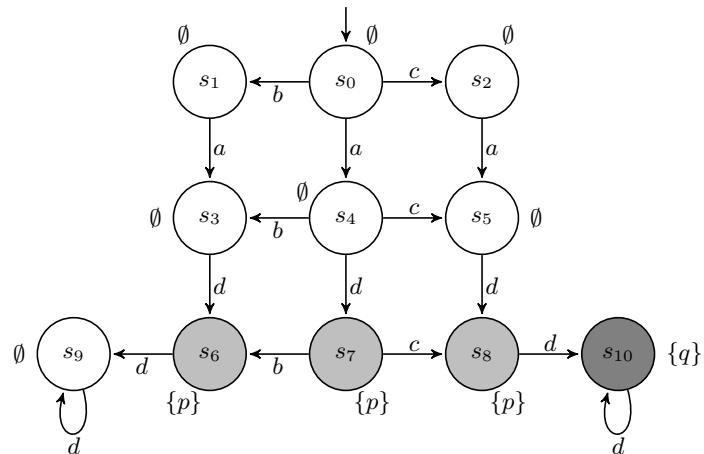
Exercise 2. Show that $(C_0)–(C_2)$ is not sufficient to ensure stuttering equivalence.

Exercise 3. Show that checking condition (C1) is as hard as reachability checking.

More precisely, given an instance $\langle \mathcal{K}_1, a \rangle$ where $a \in AP$, show how to obtain an instance $\langle \mathcal{K}_2, red \rangle$ of the checking-condition-(C1) problem, such that $\mathcal{O}(|\mathcal{K}_2|) = |\mathcal{K}_1|$ and $\mathcal{K}_1 \models_{\exists} \mathsf{F} a$ iff the choice of the ample sets red in \mathcal{K}_2 violates condition (C1).

Hint: Start by adding a self-loop with a new action β to every state of \mathcal{K}_1 . Also, letting s_0 be the initial state in \mathcal{K}_1 , choose red such that $red(s_0) = \{\beta\}$.

Exercise 4. Consider the following system with $A = \{a, b, c, d\}$:



1. Let $red(s_0) = \{b, c\}$ and $red(s) = en(s)$ for $s \neq s_0$; show that this ample set assignment is compatible with $C_0–C_3$.

2. Exhibit a CTL(U) formula that distinguishes between the original system and its reduction.
3. Can you propose an assignment that also complies with C_4 : if $red(s) \neq en(s)$, then $|red(s)| = 1$? You are not allowed to choose $red(s_0)$ to be $en(s_0)$.

Exercise 5. Let φ be an LTL formula. We define the X-depth $d_X(\varphi)$ and the U-depth $d_U(\varphi)$ of φ as the maximal nesting of X- or U-operators in φ :

$$\begin{array}{ll}
 d_X(p) = 0 & d_U(p) = 0 \\
 d_X(\neg\varphi) = d_X(\varphi) & d_U(\neg\varphi) = d_U(\varphi) \\
 d_X(\varphi \wedge \psi) = \max(d_X(\varphi), d_X(\psi)) & d_U(\varphi \wedge \psi) = \max(d_U(\varphi), d_U(\psi)) \\
 d_X(X\varphi) = 1 + d_X(\varphi) & d_U(X\varphi) = d_U(\varphi) \\
 d_X(\varphi U \psi) = \max(d_X(\varphi), d_X(\psi)) & d_U(\varphi U \psi) = 1 + \max(d_U(\varphi), d_U(\psi))
 \end{array}$$

We denote by $LTL(U^m, X^n)$ the set of LTL formulas φ with $d_X(\varphi) \leq n$ and $d_U(\varphi) \leq m$, where $n = \infty$ or $m = \infty$ indicates no restriction of the operator in question.

1. We say that two words $w, w' \in \Sigma^\omega$ are *n-stutter-equivalent* if there exists letters $a_0, a_1, \dots \in \Sigma$ and $f, g : \mathbb{N} \rightarrow \mathbb{N}^*$ such that $w = a_0^{f(0)} a_1^{f(1)} \dots$, $w' = a_0^{g(0)} a_1^{g(1)} \dots$, and for all $i \geq 0$, $a_i = a_{i+1}$ implies $a_i = a_j$ for all $j > i$, and $f(i) < n+1$ or $g(i) < n+1$ implies $f(i) = g(i)$. Show that for all $n \geq 0$ and $\varphi \in LTL(U^\infty, X^n)$, $L(\varphi)$ is closed under *n*-stutter-equivalence.
2. A similar principle can be formulated when the U-depth is restricted, by considering stuttering of factors instead of letters. Show that for all $m \geq 1$ and $\varphi \in LTL(U^m, X^0)$, for all $u, v \in \Sigma^*$ and $w \in \Sigma^\omega$, we have $uv^m w \in L(\varphi)$ iff $uv^{m+1} w \in L(\varphi)$.
3. Using the results above, show that the language $(aa|ab)^\omega$ cannot be defined by any LTL formula. (Remark: The language can, however, be accepted by a Büchi automaton.)