MPRI 1-22 Basics of Verification 2025

TD 7: Partial-Order Reduction

Reminder:
(C0) red(s) =0 iff en(s) = 0.

(C1) For every path s %5 51 2 ... 2% 5. % ¢ in K (for any n > 0), if a ¢ red(s) and a
depends on some action in red(s) (i.e. there exists b € red(s) such that (a,b) ¢ I), then
there exists 1 < i < n such that a; € red(s).

(C2) If red(s) # en(s), then all actions in red(s) are invisible.

(C3) For all cycles in the reduced system K’, the following holds: if a € en(s) for some state s
in the cycle, then a € red(s’) for some (possibly other) state s’ in the cycle.

Exercise 1. Consider the condition (C7): for any s with red(s) # en(s), any a in red(s) is
independent from every b in en(s)\red(s).

1. Show that (C7) implies (C]).

2. Show that (Cp), (C1), (Ca),(C3) are not sufficient to ensure stuttering equivalence, i.e.,
that there exists a Kripke structure I and an assignment red satisfying conditions (Cj),
(C1), (C2), (C3) but such that the reduced system K’ induced by red is not stuttering
equivalent to K.

Exercise 2. Show that (Cp)—(C2) is not sufficient to ensure stuttering equivalence.

Exercise 3. Show that checking condition (C1) is as hard as reachability checking.

More precisely, given an instance (K1,a) where a € AP, show how to obtain an instance
(K2, red) of the checking-condition-(C1) problem, such that O(|Ks|) = |K1] and K1 =3 Fa iff
the choice of the ample sets red in Ko violates condition (C1).

Hint: Start by adding a self-loop with a new action S to every state of K. Also, letting sg
be the initial state in K;, choose red such that red(sg) = {8}.

Exercise 4. Consider the following system with A = {a,b, ¢, d}:

0 X 0

Q@
d
¢ Cs\ d {q}
N4

1. Let red(so) = {b,c} and red(s) = en(s) for s # sp; show that this ample set assignment is
compatible with Cp—C}.

MPRI 1-22 Basics of Verification 2025

2. Exhibit a CTL(U) formula that distinguishes between the original system and its reduction.

3. Can you propose an assignment that also complies with Cy: if red(s) # en(s), then
|red(s)| = 1?7 You are not allowed to choose red(sg) to be en(sp).

Exercise 5. Let ¢ be an LTL formula. We define the X-depth dx(¢) and the U-depth dy(y) of
© as the maximal nesting of X- or U-operators in (:

dx(p) =0 du(p) =
dx(—p) = dx(p) dy(—yp) = ()
dx(somb) = max(dx(¢), dx(v)) du(p A) = max(dy(p), du(¥))
(@) =1+ dx(p) du(XsO)—du()
dx(p U ¢) = max(dx(¢), dx (1)) du(p U) =1+ max(dy(y),du(¥))

We denote by LTL(U™,X") the set of LTL formulas ¢ with dx(¢) < n and dy(y) < m, where
n = oo or m = oo indicates no restriction of the operator in question.

1. We say that two words w, w’ € X% are n-stutter-equivalent if there exists letters ag, ay, ... €
Y and f,g : N — N* such that w = ag(o)a{(l)..., w = ag(o)af(l)..., and for all 7 > 0,
a; = a;41 implies a; = a; for all j >4, and f(i) <n+1or g(i) < n+1 implies f(i) = g(7).
Show that for all n > 0 and ¢ € LTL(U>,X"), L(¢) is closed under n-stutter-equivalence.
2. A similar principle can be formulated when the U-depth is restricted, by considering stut-

tering of factors instead of letters. Show that for all m > 1 and ¢ € LTL(U™, X?), for all
u,v € ¥* and w € X¥, we have uv™w € L(p) iff uv™w € L(p).

3. Using the results above, show that the language (aa|ab)” cannot be defined by any LTL
formula. (Remark: The language can, however, be accepted by a Biichi automaton.)

