

Solutions to TD9

Reminder:

A *pushdown system* (PDS) is a triple $\mathcal{P} = (P, \Gamma, \Delta)$, where P is a finite set of *control states*, Γ is a finite *stack alphabet*, and $\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)$ is a finite set of *rules*. We write $pA \hookrightarrow qw$ when $((p, A), (q, w)) \in \Delta$. We associate with a PDS \mathcal{P} and an initial configuration $c_0 \in P \times \Gamma^*$ the transition system $\mathcal{T}_{\mathcal{P}} = (Con(\mathcal{P}), \rightarrow, c_0)$, where $Con(\mathcal{P}) = P \times \Gamma^*$ is the set of *configurations*, and $pAw' \rightarrow qww'$ for all $w' \in \Gamma^*$ iff $pA \hookrightarrow qw \in \Delta$. We write $pw \Rightarrow p'w'$ if there is a path from pw to $p'w'$ in $\mathcal{T}_{\mathcal{P}}$.

Let \mathcal{P} be a PDS. A \mathcal{P} -*automaton* is a finite automaton $\mathcal{A} = (Q, \Gamma, P, T, F)$, where the alphabet of \mathcal{A} is the stack alphabet Γ , and the initial states of \mathcal{A} are the control states P . It is *normalized* if there are no transitions leading into initial states. We say that \mathcal{A} *accepts* the configuration pw if \mathcal{A} has a path labelled by input w starting at p and ending at some final state. We denote by $\mathcal{L}(\mathcal{A})$ be the set of configurations accepted by \mathcal{A} . A set C of configurations is called *regular* if there is some \mathcal{P} -automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = C$.

Given a set C of configurations of \mathcal{P} , we let

$$pre^*(C) = \{c' \mid \exists c \in C : c' \Rightarrow c\} \quad post^*(C) = \{c' \mid \exists c \in C : c \Rightarrow c'\}$$

If C is regular, then so are $pre^*(C)$ and $post^*(C)$. If \mathcal{A} is a normalized \mathcal{P} -automaton accepting C , \mathcal{A} can be transformed into an automaton accepting $pre^*(C)$ by applying the following saturation rule until no transition can be added:

If $q \xrightarrow{w} r$ currently holds in \mathcal{A} and $pA \hookrightarrow qw$ is a rule in \mathcal{P} , then add the transition (p, A, r) to \mathcal{A} .

The procedure for $post^*(C)$ is similar.

1 Labelled Pushdown Systems

1. Let $\mathcal{A}_L = (Q, \Sigma, \Delta_L, I, F)$ be the finite automaton which recognises language L . We consider the product of \mathcal{A}_L and $\mathcal{P} = (P, \Gamma, \Delta, \Sigma)$ and obtain a new pushdown system $\mathcal{P}' = (P \times Q, \Gamma, \Delta', \Sigma)$, where Δ' is defined using the following rule:

$$(p_1, q_1)A \xrightarrow{a} (p_2, q_2)w \text{ in } \mathcal{P}' \text{ if and only if } p_1A \xrightarrow{a} p_2w \text{ in } \mathcal{P} \text{ and } q_1 \xrightarrow{a} q_2 \text{ in } \mathcal{A}_L.$$

We compute $pre^*[L](C)$ as follows. Let C' be the set of configurations $(q, q_f)w$ in \mathcal{P}' such that $qw \in C$ and $q_f \in F$. Then $pre^*[L](C)$ is obtained by computing $pre^*(C') \cap (P \times I) \times \Gamma^*$.

2. Suppose that C is given by a finite automaton \mathcal{A}_C having n_C states. The initial \mathcal{P} -automaton corresponding to C' has at most $n_C n_L$ states and the size of the transition system of \mathcal{P}' is at most $|\Delta'| = |\Delta| |\Delta_L|$. Thus the time taken to compute the \mathcal{P} -automaton for $pre^*(C')$ is $n_C^2 n_L^2 |\Delta| |\Delta_L|$. One then just needs to restrict the initial states for this \mathcal{P} -automaton to those in $P \times I$.

2 Dickson's Lemma

1. Easy.
2. First note that (\mathbb{N}, \leq) is a wqo: \leq is a total ordering over \mathbb{N} , thus $n_i \not\leq n_j$ implies $n_i > n_j$, and any strictly decreasing sequence $n_0 > n_1 > \dots$ over \mathbb{N} is finite of length at most $n_0 + 1$.

The set $(\mathbb{N} \uplus \{\omega\}, \leq)$ is also totally ordered. Consider a sequence $n_0 > n_1 > \dots$ over $\mathbb{N} \uplus \{\omega\}$. If for some index i , $n_i = \omega$, then $i = 0$ and for all $j > 0$, $n_j < \omega$, thus the sequence $n_1 > n_2 > \dots$ is over \mathbb{N} and is finite.

3. We start with the following claim.

Claim 1. *Let $(a_n)_{n \geq 0}$ be a sequence that does not contain any non-decreasing subsequence. There exist $i_0 < i_1 < i_2 < \dots$ such that $a_{i_0} \not\leq a_{i_k}$ for all k .*

Proof. We suppose on the contrary that for all $i_0 < i_1 < \dots$, there exists $k > 0$ such that $a_{i_0} \leq a_{i_k}$. We can then easily construct an non-decreasing subsequence $a_{j_0} \leq a_{j_1} \leq \dots$ inductively: starting with $a_{j_0} = a_{i_0}$, given a_{j_ℓ} , we can always find $a_{j_{\ell+1}}$ such that $a_{j_\ell} \leq a_{j_{\ell+1}}$. This contradicts the condition that there is no non-decreasing subsequence of $(a_n)_{n \geq 0}$. \square

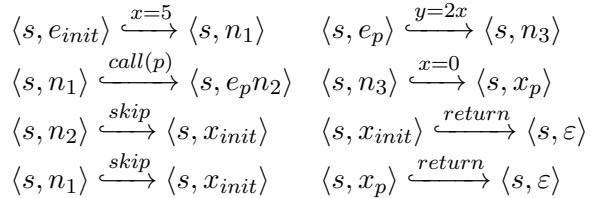
Suppose $(a_n)_{n \geq 0}$ is a sequence that does not contain any non-decreasing subsequence. We will construct an infinite sequence that violates the wqo condition. A first application of the claim gives a subsequence $(a_{i_j})_{j \geq 0}$ such that $a_{i_0} \not\leq a_{i_j}$ for all $j > 0$. As $(a_{i_j})_{j \geq 0}$ cannot be non-decreasing we apply the claim once again to $(a_{i_j})_{j \geq 1}$ (note the $j \geq 1$ instead of $j \geq 0$), and so on. This gives us a way of obtaining an non-decreasing subsequence of $(a_n)_{n \geq 0}$; a contradiction.

Alternative proof that is direct: Fix the infinite sequence $a_0 a_1 \dots$ and consider the set $M = \{i \in \mathbb{N} \mid \forall j > i, a_i \not\leq a_j\}$. If M were infinite, then the infinite sequence $a_{i_0} a_{i_1} \dots$ for $i_0 < i_1 < \dots$ in M would verify in particular $a_{i_j} \not\leq a_{i_k}$ for all $j < k$, contradicting the fact that (A, \leq) is a wqo. Thus M is bounded and any a_i with $i > \max M$ selects an element a_j with $j > i > \max M$ and $a_i \leq a_j$, i.e. can start an infinite increasing subsequence.

4. For any sequence $((a_n, b_n))_{n \geq 0}$, by the previous question, we can choose a subsequence $((a_{i_n}, b_{i_n}))_{n \geq 0}$ such that $(a_{i_n})_{n \geq 0}$ is non-decreasing. Finally by the definition of a wqo, one can find m, ℓ such that $b_{i_m} \leq b_{i_\ell}$.

3 Data-flow Analysis

1. We show how to convert the given example into a pushdown system. The general approach follows the same idea.



2. We can construct a regular automaton from the flow graph as follows. The set of states is N . The set of transitions is initially given by the edges in E . We then modify it as follows: For edges in E of the form $(n_1, call(p), n_2)$, we remove the transition $n_1 \xrightarrow{call(p)} n_2$ and add the transitions $n_1 \xrightarrow{call(p)} e_p$ and $x_p \xrightarrow{\varepsilon} n_2$. This corresponds to our intuition for how a program execution proceeds. Finally, the node n is defined as the initial state and n' is defined as the final state of the automaton.

The language of the automaton intersected with the language $(A \setminus D_v)^* R_v$ describes the sequences of actions that can happen between n and n' .

3. Let $L_{n,n'}$ be the regular language obtained in the last question. Define $L = \bigcup_{n,n' \in N} L_{n,n'}$. Then the set of nodes where n is live is obtained from $pre^*[L](Q \times \Gamma^*)$ by determining the initial states of its \mathcal{P} -automaton from which the final states are reachable.