MPRI 1-22 Basics of Verification 2025

Solutions to TD9

Reminder:

A pushdown system (PDS) is a triple P = (P,I', A), where P is a finite set of control states,
I is a finite stack alphabet, and A C (P xT') x (P xI'*) is a finite set of rules. We write pA — qw
when ((p, 4), (¢, w)) € A. We associate with a PDS P and an initial configuration ¢ € P x I'*
the transition system 7p = (Con(P), —, cg), where Con(P) = P xI'* is the set of configurations,
and pAw’ — quw'’ for all w’ € T™* iff pA — qw € A. We write pw = p/'w’ if there is a path from
pw to p'w’ in Tp.

Let P be a PDS. A P-automaton is a finite automaton A = (Q,I', P,T,F), where the
alphabet of A is the stack alphabet I', and the initial states of A are the control states P. It
is normalized if there are no transitions leading into initial states. We say that A accepts the
configuration pw if A has a path labelled by input w starting at p and ending at some final
state. We denote by L(.A) be the set of configurations accepted by A. A set C' of configurations
is called regular if there is some P-automaton A with £(A) = C.

Given a set C of configurations of P, we let

pre*(C)={c |Fce C:d = ¢} post*(C) ={c |Fe€ C:c=}

If C is regular, then so are pre*(C) and post*(C). If A is a normalized P-automaton accepting C,
A can be transformed into an automaton accepting pre*(C') by applying the following saturation
rule until no transition can be added:

If ¢ = r currently holds in A and pA < qw is a rule in P, then add the transition
(p, A,r) to A.

The procedure for post*(C') is similar.

1 Labelled Pushdown Systems

1. Let A = (Q,%,Ar,I,F) be the finite automaton which recognises language L. We
consider the product of A7 and P = (P,I',A,¥) and obtain a new pushdown system
P =(PxQ,T,A"Y), where A’ is defined using the following rule:

(p1,q1)A < (p2, g2)w in P’ if and only if p; A < pow in P and q; = g2 in Ap.

We compute pre*[L](C) as follows. Let C’ be the set of configurations (g, ¢f)w in P’ such
that quw € C and ¢y € F. Then pre*[L](C') is obtained by computing pre*(C")N(Px1)xT*.

2. Suppose that C is given by a finite automaton A¢c having no states. The initial P-
automaton corresponding to C’ has at most ncny, states and the size of the transition
system of P’ is at most |A’| = |A||AL|. Thus the time taken to compute the P-automaton
for pre*(C’) is nZn2|A||AL]. One then just needs to restrict the initial states for this
P-automaton to those in P x I.

2 Dickson’s Lemma

1. Easy.

2. First note that (N, <) is a wqo: < is a total ordering over N, thus n; £ n; implies n; > n;,
and any strictly decreasing sequence ng > ni > --- over N is finite of length at most ng+1.
The set (N W {w}, <) is also totally ordered. Consider a sequence ng > n; > --- over
Nw {w}. If for some index i, n; = w, then ¢ = 0 and for all j > 0, n; < w, thus the
sequence nq > ng > --- is over N and is finite.

MPRI 1-22 Basics of Verification 2025

3. We start with the following claim.

Claim 1. Let (an)n>0 be a sequence that does not contain any non-decreasing subsequence.
There exist 19 < 11 < 12 < ... such that a;, f ai, for all k.

Proof. We suppose on the contrary that for all ig < iy < ..., there exists k > 0 such that
a;, < aj,. We can then easily construct an non-decreasing subsequence aj, < aj; < ...
inductively: starting with a;, = ao, given a;,, we can always find a;,, , such that a;, < a;,, .
This contradicts the condition that there is no non-decreasing subsequence of (a)n>0. [

Suppose (an)n>0 is a sequence that does not contain any non-decreasing subsequence. We
will construct an infinite sequence that violates the wqo condition. A first application of
the claim gives a subsequence (a;;); >0 such that a;, £ a;; for all j > 0. As (a;;);>0 cannot
be non-decreasing we apply the claim once again to (a;);>1 (note the j > 1 instead of
j > 0), and so on. This gives us a way of obtaining an non-decreasing subsequence of
(an)n>0; a contradiction.

Alternative proof that is direct: Fix the infinite sequence agai --- and consider the set
M ={ieN|Vj>i,a; £a;}. If M were infinite, then the infinite sequence a;,a;, - -- for
ig < i1 < --- in M would verify in particular a;; £ a;, for all j < k, contradicting the fact
that (A, <) is a wqo. Thus M is bounded and any a; with i > max M selects an element
a; with j >4 > max M and a; < aj, i.e. can start an infinite increasing subsequence.

4. For any sequence ((an,by))n>0, by the previous question, we can choose a subsequence
((@i, , bi,,))n>0 such that (a;,)n>0 is non-decreasing. Finally by the definition of a wqo, one
can find m, ¢ such that b;,, <b;,.

Tm —

3 Data-flow Analysis

1. We show how to convert the given example into a pushdown system. The general approach
follows the same idea.

(s, emit) 3 (s,m) (s,0p) s (s,1m3)
<57n1>M<5,6pn2> (s,m3) <=3 (s,3,)
(5,19) B (s, wimit) (5, Timt) oS (s, €)
(5,m1) B (s zimi) (5, 2p) T (s, €)

2. We can construct a regular automaton from the flow graph as follows. The set of states is

N. The set of transitions is initially given by the edges in ££. We then modify it as follows:

Ul
For edges in E of the form (nq,call(p),n2), we remove the transition n; i@—) ng and

... call(p
add the transitions ni —(—)—> ep and x, =5 ny. This corresponds to our intuition for how

a program execution proceeds. Finally, the node n is defined as the initial state and n’ is
defined as the final state of the automaton.

The language of the automaton intersected with the language (A \ D,)*R, describes the
sequences of actions that can happen between n and n'.

3. Let L, be the regular language obtained in the last question. Define L =, ,, wen In
Then the set of nodes where n is live is obtained from pre*[L](Q x I'*) by determining the
initial states of its P-automaton from which the final states are reachable.

	Labelled Pushdown Systems
	Dickson's Lemma
	Data-flow Analysis

