
MPRI 1-22 Basics of Verification 2025

Solutions to TD9

Reminder:
A pushdown system (PDS) is a triple P = (P,Γ,∆), where P is a finite set of control states,

Γ is a finite stack alphabet, and ∆ ⊆ (P ×Γ)×(P ×Γ∗) is a finite set of rules. We write pA ↪→ qw
when ((p,A), (q, w)) ∈ ∆. We associate with a PDS P and an initial configuration c0 ∈ P × Γ∗

the transition system TP = (Con(P),→, c0), where Con(P) = P×Γ∗ is the set of configurations,
and pAw′ → qww′ for all w′ ∈ Γ∗ iff pA ↪→ qw ∈ ∆. We write pw ⇒ p′w′ if there is a path from
pw to p′w′ in TP .

Let P be a PDS. A P-automaton is a finite automaton A = (Q,Γ, P, T, F), where the
alphabet of A is the stack alphabet Γ, and the initial states of A are the control states P . It
is normalized if there are no transitions leading into initial states. We say that A accepts the
configuration pw if A has a path labelled by input w starting at p and ending at some final
state. We denote by L(A) be the set of configurations accepted by A. A set C of configurations
is called regular if there is some P-automaton A with L(A) = C.

Given a set C of configurations of P, we let

pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒ c} post∗(C) = {c′ | ∃c ∈ C : c ⇒ c′}

If C is regular, then so are pre∗(C) and post∗(C). If A is a normalized P-automaton accepting C,
A can be transformed into an automaton accepting pre∗(C) by applying the following saturation
rule until no transition can be added:

If q
w−→ r currently holds in A and pA ↪→ qw is a rule in P, then add the transition

(p,A, r) to A.

The procedure for post∗(C) is similar.

1 Labelled Pushdown Systems

1. Let AL = (Q,Σ,∆L, I, F) be the finite automaton which recognises language L. We
consider the product of AL and P = (P,Γ,∆,Σ) and obtain a new pushdown system
P ′ = (P ×Q,Γ,∆′,Σ), where ∆′ is defined using the following rule:

(p1, q1)A
a
↪−→ (p2, q2)w in P ′ if and only if p1A

a
↪−→ p2w in P and q1

a−→ q2 in AL.

We compute pre∗[L](C) as follows. Let C ′ be the set of configurations (q, qf)w in P ′ such
that qw ∈ C and qf ∈ F . Then pre∗[L](C) is obtained by computing pre∗(C ′)∩(P×I)×Γ∗.

2. Suppose that C is given by a finite automaton AC having nC states. The initial P-
automaton corresponding to C ′ has at most nCnL states and the size of the transition
system of P ′ is at most |∆′| = |∆||∆L|. Thus the time taken to compute the P-automaton
for pre∗(C ′) is n2

Cn
2
L|∆||∆L|. One then just needs to restrict the initial states for this

P-automaton to those in P × I.

2 Dickson’s Lemma

1. Easy.

2. First note that (N,≤) is a wqo: ≤ is a total ordering over N, thus ni ̸≤ nj implies ni > nj ,
and any strictly decreasing sequence n0 > n1 > · · · over N is finite of length at most n0+1.

The set (N ⊎ {ω},≤) is also totally ordered. Consider a sequence n0 > n1 > · · · over
N ⊎ {ω}. If for some index i, ni = ω, then i = 0 and for all j > 0, nj < ω, thus the
sequence n1 > n2 > · · · is over N and is finite.

1

MPRI 1-22 Basics of Verification 2025

3. We start with the following claim.

Claim 1. Let (an)n≥0 be a sequence that does not contain any non-decreasing subsequence.
There exist i0 < i1 < i2 < . . . such that ai0 ≰ aik for all k.

Proof. We suppose on the contrary that for all i0 < i1 < . . . , there exists k > 0 such that
ai0 ≤ aik . We can then easily construct an non-decreasing subsequence aj0 ≤ aj1 ≤ . . .
inductively: starting with aj0 = a0, given ajℓ , we can always find ajℓ+1

such that ajℓ ≤ ajℓ+1
.

This contradicts the condition that there is no non-decreasing subsequence of (an)n≥0.

Suppose (an)n≥0 is a sequence that does not contain any non-decreasing subsequence. We
will construct an infinite sequence that violates the wqo condition. A first application of
the claim gives a subsequence (aij)j≥0 such that ai0 ≰ aij for all j > 0. As (aij)j≥0 cannot
be non-decreasing we apply the claim once again to (aij)j≥1 (note the j ≥ 1 instead of
j ≥ 0), and so on. This gives us a way of obtaining an non-decreasing subsequence of
(an)n≥0; a contradiction.

Alternative proof that is direct: Fix the infinite sequence a0a1 · · · and consider the set
M = {i ∈ N | ∀j > i, ai ̸≤ aj}. If M were infinite, then the infinite sequence ai0ai1 · · · for
i0 < i1 < · · · in M would verify in particular aij ̸≤ aik for all j < k, contradicting the fact
that (A,≤) is a wqo. Thus M is bounded and any ai with i > maxM selects an element
aj with j > i > maxM and ai ≤ aj , i.e. can start an infinite increasing subsequence.

4. For any sequence ((an, bn))n≥0, by the previous question, we can choose a subsequence
((ain , bin))n≥0 such that (ain)n≥0 is non-decreasing. Finally by the definition of a wqo, one
can find m, ℓ such that bim ≤ biℓ .

3 Data-flow Analysis

1. We show how to convert the given example into a pushdown system. The general approach
follows the same idea.

⟨s, einit⟩
x=5
↪−−→ ⟨s, n1⟩ ⟨s, ep⟩

y=2x
↪−−−→ ⟨s, n3⟩

⟨s, n1⟩
call(p)
↪−−−−→ ⟨s, epn2⟩ ⟨s, n3⟩

x=0
↪−−→ ⟨s, xp⟩

⟨s, n2⟩
skip
↪−−→ ⟨s, xinit⟩ ⟨s, xinit⟩

return
↪−−−−→ ⟨s, ε⟩

⟨s, n1⟩
skip
↪−−→ ⟨s, xinit⟩ ⟨s, xp⟩

return
↪−−−−→ ⟨s, ε⟩

2. We can construct a regular automaton from the flow graph as follows. The set of states is
N . The set of transitions is initially given by the edges in E. We then modify it as follows:

For edges in E of the form (n1, call(p), n2), we remove the transition n1
call(p)−−−−→ n2 and

add the transitions n1
call(p)−−−−→ ep and xp

ε−→ n2. This corresponds to our intuition for how
a program execution proceeds. Finally, the node n is defined as the initial state and n′ is
defined as the final state of the automaton.

The language of the automaton intersected with the language (A \Dv)
∗Rv describes the

sequences of actions that can happen between n and n′.

3. Let Ln,n′ be the regular language obtained in the last question. Define L =
⋃

n,n′∈N Ln,n′ .
Then the set of nodes where n is live is obtained from pre∗[L](Q×Γ∗) by determining the
initial states of its P-automaton from which the final states are reachable.

2

	Labelled Pushdown Systems
	Dickson's Lemma
	Data-flow Analysis

